Distributed Computation for Computer Animation

John W. Peterson
Computer Science Deptartment
University of Utah

Abstract

Computer animation is a very computationally intensive task. Recent developments
in image synthesis, such as shadows, reflections and motion blur enhance the quality of
computer animation, but also dramatically increase the amount of CPU time needed to do
it. Fortunately, the computations involved with computer animation are easily decomposed
into smaller tasks, such as rendering single frames or parts of a frame. This makes the
problem an ideal candidate for “coarse-grain” parallel implementation.

In order to provide the necessary cycles, unused idle time on personal workstations is
used to provide a single large parallel computing resource. A survey of several schemes for
coordinating this type of resource is presented, along with a detailed examination of a Unix
based system currently in use at the University of Utah.

1 Introduction

As large networks of computers become commonplace, it has become interesting to consider
them as a single computational resource, rather than individual machines. Recent advances
in networking software such as distributed filesystems and remote procedure calls make using
networks much more transparent to application programs. For some applications, the ability to
use multiple machines in parallel is limited (e.g., complex simulations where the next iteration
depends on data from the previous one). Other applications, such as computer animation,
are ideally suited to parallel execution. This paper examines this type of application on large
networks.

The type of parallelism explored in this paper is assumed to be course grained, with individ-
ual computations lasting minutes or hours instead of fractions of a second. Another assumption
is that the computing resources are developed and maintained for general purpose use. In other
words, we wish to take advantage of an existing resource, rather than develop one specifically
for the task.

This paper gives a brief discussion of the scale of the resources we are discussing, and then
presents an informal survey of existing systems for using computational power on networks
as a whole. Finally, a system developed at the University of Utah for computer animation is
examined in detail.

2 The Resources

The resources available on a network of workstations are dependent on two factors: how much
the workstations are used by their dedicated users, and the power of the individual machines.

2.1 CPU usage

In addition to the obvious periods of idle time (night, weekends, etc.) a typical workstation CPU
is usually not fully utilized even during the day. A workstation often spends its time performing
relatively simple tasks, such as editing, reading mail and terminal emulation. Statistics gathered
indicate a typical workstation CPU spends approximately 90-95% of its time in the idle loop!.

Unfortunately, not all this idle time is directly available. If the CPU’s idle loop is replaced
with a major application, distracting side effects occur even if the application is running at a
low priority. For example, if the workstation user is interacting with a Lisp interpreter, having
another large application in the background may dramatically increase the paging activity and
slow down the interaction.

2.2 CPU power

The availability of advanced microprocessors like the 68020/68881 chip set have blurred the
distinction between mainframe and workstation computing power. Some recent benchmarks
conducted at BRL [6] give the approximate comparisons:

68020 based workstation =~ 1 Vax 780
4 processor Cray XMP /48 ~ 90 Vax 780’s.

So if you can get efficient parallelism:
90 workstations &~ 4 processor Cray XMP /48

The economics of this comparison are interesting, since a Cray goes for something like $10-$15
Million vs. $3-$5 Million for a large workstation network.

3 Getting Parallelism The Hard Way

There are many examples of animation done by manually starting the computation on a number
of machines. Among the best known are:

¢ Jim Blinn’s animation of DNA molecules for the PBS Cosmos series. Blinn and his
collegues wandered all over NASA’s Jet Propulsion Laboratory after 5:00 pm looking for
unused PDP-11’s. When one was found, a tape was loaded on the machine and it was
left to crunch away on part of the sequence for the evening. The results were collected on
magnetic tape in the morning.[10]

o The short film The Adventures of Andre and Wally Bee produced by Lucasfilm was done
on a larger geographic scale. Portions of the film were computed on a Cray in Minnesota
and on ten Vaxes at MIT’s project Athena. Data was shipped out and results were
collected on tape. The final results were composited at Lucasfilm’s facilities in California.

! Usage statistics were taken on the Sun and Apollo workstations in the CS department. The HP workstations
don’t appear to keep track of this information.

e Apollo Computer’s film Quest - A Long Ray’s Journey Into Light was computed on a
few hundred workstations at Apollo. Although the machines were connected with a local
area network, in the rush to complete the film little software was written for coordinating
the computation. Instead, a person (given the screen credit ‘Node Hunter and Gigabyte
Master’) typed the necessary commands into individual nodes. Since that project, more
advanced software has been developed for starting the computations [1].2

4 Systems for Distributed Computation

4.1 The Xerox “Worm” Programs

One of the earliest examples of a system for performing distributed computation on a local
area network is the Worm developed at Xerox PARC[9]. The worm worked as a layer on top of
which applications were built. The program was executed on several machines at a time, each
machine a segment of the worm. The worm worked at a relatively low level compared to more
modern systems.

After a worm was initially started, it operated by attempting to fill out the rest of its
segments. It would work through the network incrementally, probing nodes to find out if they
were idle. When an idle node was found, the worm would continue to boot itself on the idle
machines until it had filled out its segments. The segments of the worm communicated with
each other using a limited broadcast, or multicast protocol.

Because the worm operated at such a low level (there was very little operating system
support beneath it) controlling it was a major problem. If the worm encountered a serious
problem it could crash the workstation it was running on. If a worm became corrupted as
it moved from machine to machine, the corrupted segment might run, but would spawn new
segments that would crash. Since the original worm thought it needed to fill out the rest of
its segments, it would continue trying to boot until all of the machines on the net had crashed
(the paper describes a situation where this actually happened).

One of the applications for the worm described by the paper is a multi-machine animation
system. The worm was modified so one machine could serve as central control node. This in
turn spawned a series of smaller worms that located the worker nodes. The master node (itself
not part of a worm) would send out the basic scene description to the worker nodes, and would
later collect the results.

4.2 Recent distributed computation systems

The Xerox Process Server Recently, Xerox has developed a system knows as the Process
Server [4] for workstations running their Cedar environment. This system is designed to make
excess cycles on a workstation available to other users on the net in a relatively transparent
fashion. The system uses remote procedure calls and transparent access to file servers for
communication between nodes. Three types of entities are provided by the system: Clients, the
workstations that request services; Servers, the machines allowing computations to be run on
them; and a Controller which processes the client’s request and assigns a server to it.

2The films Quest and The Adventures of Andre and Wally B. appear in the anthology Animation Celebration,
released by Expanded Entertainment in 1986.

When a user makes a request for work, the parameters (commands, arguments, etc.) are
passed to the Client process on the user’s workstation. The Client then contacts the Controller,
and if the request seems valid, the Controller selects a server machine (based on which one
appears least loaded) and returns the machine’s identifier to the Client. The Client then
contacts the Server. The Server fetches the files it needs, and starts executing the command.
During execution, the Server uses the Client for file operations and answering questions about
the user’s environment. If an error occurs, the Server brings up an error window on the Client’s
node. If the Server aborts the computation (because the load was too high) or crashes, the
Client must ask the Controller to assign it a new Server and restart the computation.

The system is implemented using a Remote Procedure Call (RPC) protocol. It is designed
to be relatively transparent to the applications executed by it, with few changes needed to
the source. It is intended for relatively large granularity computing (compilation, typesetting,
image generation, etc.). Because the system uses specific, lightweight protocols, the Process
Server runs with relatively little overhead.

Apolle’s Network Computing System Apollo Computer recently developed a system
called the Network Computing System (NCS) for sharing resources (including computation)
across large networks of heterogeneous machines[3]. It provides a Remote Procedure Call inter-
face, a network data representation definition, an interface compiler and support for replicated
databases. The remote procedure call interface supports several scalar formats. These are au-
tomatically converted for different hosts (to compensate for differences in floating point, byte
ordering, etc.). A Network Interface Definition Language automatically constructs the RPC
networking interface from user-defined stubs. It also provides methods for passing more complex
data structures over the network, such as trees.

NCS provides a Location Broker, a service that allows objects on the network to be found
by type, interface or combinations of these characteristics. They are identified by Universal
Unique Identifiers that are guaranteed to be unique across the network. Although NCS supports
remote computation, it currently doesn’t provide for automatically selecting hosts for the remote
computation on the basis of load. This is planned as a future extension; nodes will be able to
query a “compute slot allocator” to access a replicated database of candidate nodes.

Remote Unix Remote Unix (RU)is a system developed by Michael Litzkow at the University
of Wisconsin [5]. This system is designed to allow a single process to operate for a very long time,
migrating from machine to machine as various workstations are used or become idle. A unique
feature of RU is that processes can be completely checkpointed as they execute, including the
status of open files. This takes place when a user logs into a workstation. When the RU spooler
finds another machine to restart the computation on, it resumes the checkpointed computation
without loss of work. This facility also gives RU a large degree of fault tolerance, since if a
machine crashes the process can always be restarted from the last checkpoint file.

The control system contains two components, a central resource manager for gathering
information about all the available machines, and a local scheduler to make decisions affecting
a particular workstation. The resource manager periodically polls the schedulers to determine
which workstations are accepting RU jobs and what jobs are waiting to run. When it finds an
“idle” workstation, it sends a message to the waiting job granting permission to execute on the
idle machine.

RU has been in use at Wisconsin on a large network consisting of several larger Vaxes
(11/7507s, 11/780’s) and about 100 MicroVax workstations. In one case a single job was able
to accumulate 60 CPU days over a three month period. Although the system supports parallel
execution by queuing several jobs at the same time, no statistics have been gathered on this
mode of operation.

5 Some Example Systems

In this section we present some examples of systems actually used for animation or similar
purposes. Because these systems are usually built around existing environments informally,
there are not many published examples of them. In order to provide more examples, a poll was
conducted on the Usenet and Arpanet networks requesting information about these types of
systems. Most of these examples are from this poll.

(A note about notation: In the descriptions below, the word dispatcher means the machine
responsible for controlling the computation. The computations are executed on worker nodes.)

5.1 Apollo/MBX based system

Part of the animation system described in [7] contained a method for using a large number
of Apollo workstations. It was based on Apollo’s MBX (“Mailbox”) system routines. These
routines allow inter-process communication between multiple workstations via filesystem objects
known as mailboxes. After the dispatcher process opens a mailbox, the workers can open
connections to the dispatcher process via this mailbox. Since all the Apollos on the network
share the same filesystem, they can all open connections to this mailbox.

This system required the ray tracer to be modified to call the routines:

Init Opened the inital connection to the dispatcher’s mailbox.

Send_status Sends a progress report (e.g., the current scanline number) to the
dispatcher.

Test_login Asked the node if anybody had logged into it. If this routine returned
true (somebody had logged in) the program is expected to call the next routine:

Shutdown Informs the dispatcher this node is no longer available, closes the MBX
connection, and exits the program.

Finished Informs the dispatcher this node is finished with its task and can start
on another.

The dispatcher would first open the MBX file, and start the worker processes on the remote
nodes. A simple protocol was used for giving each worker a unique ID to identify itself, since
the dispatcher received all of its input on a single channel. The dispatcher listened to messages
generated by Send_status, Shutdown and Finished, and updates its record of the work done. If
Finished was called, that workitem would be removed from the queue, if Shutdown was called
it would be re-queued. Every transaction was recorded in a logfile.

As implemented, the system could tolerate worker failures but not dispatcher failures. Al-
though never implemented, some ideas were planned for increasing the robustness. This in-
cluded assigning one of the workers to be the “copilot”. The copilot would receive a copy of the

dispatcher’s state every time it performed a Send_status call. If the copilot tried to perform a
Send_status and failed (i.e, the MBX channel was no longer open) it would spawn off a local
copy of the dispatcher. This new dispatcher would re-open the MBX channel. If other workers
tried to perform a Send_status and failed, they could try to close and re-open the MBX file to
establish a connection to the new dispatcher.

Although the basic system was used to generate a few stills, it was never used for large scale
work, mainly because the bulk of the computing resources were on other (non-Apollo) systems.
The system was dropped, eventually replaced with one that could take advantage of any Unix
host.

5.2 Locus based system at UCLA

At UCLA, Matthew Merzbacher developed a scheme for generating frames with a collection of
ten Vaxes running the Locus operating system. Locus provides a common shared filesystem
across several machines in a Unix environment. This allowed all of the Vaxes to access a
single directory where all of the data and results were kept. The files were named after the
worker machines and given suffixes indicating the state of the system (e.g.: athena.i, athena.r,
athena.d).

After the dispatcher started, it created .1 files named for each of the worker machines,
containing the data for the rendering program, and spawned rendering processes on all of the
workers. The worker process polled the main directory, waiting for a .i file with its name on it.
When one was found, the worker created the .r file to indicate it was running. When it finished
the job, the worker removed the .r file and created a .d file, indicating it was done.

The dispatcher polled the directory looking for the .d files. When one was found it removed
the .1 and .d files (in that order, to prevent the job from running twice) and places a new .i file
in the directory. If the load on a machine was too high or if it was past 7 am, no new jobs would
be started. Logs were kept of how many jobs per night were completed. Each job corresponded
to a frame of the movie and required approximately ten minutes of Vax 11/750 time.

If the dispatcher failed, there was a backup dispatcher waiting to take over (which in turn
would spawn a new backup). A new dispatcher was automatically started each evening with
the Unix at utility. It could detect if a job had failed the previous night, because the directory
would contain a .i file without a corresponding .d file.

5.3 TCP based system at BRL

At the Army Ballistics Research Laboratory, Mike Muuss developed a system for taking ad-
vantage of idle time on large mainframes and supercomputers. The ray tracing program was
modified so it could operate remotely, receiving and writing information over a TCP connec-
tion. The work is dispatched to the worker machines in small portions of a frame (e.g., three
scanlines) and collected by the dispatcher after each scanline is finished. Each worker has a
private copy of the database, but the information specific to the frame being rendered (view-
point, positions of objects, etc.) is transmitted directly to the worker via point-to-point TCP
connections. Machines are selected manually, and can be added and dropped from the pool of
workers on the fly. The rendering process runs at a very low priority on the worker mainframes.

If a worker fails, the job running on it is automatically re-queued on the next available
machine. However, the dispatcher writes out the data collected from the workers after every

frame, so the entire frame is lost if it fails. The system is usually run with mainframes or
supercomputers, in one instance 13 Gould 9000 series machines “all over the east coast” were
used.

5.4 Lisp Machine based system at the MIT Media Lab

At the MIT Media Lab, Steve Strassmann developed a system for using up idle time on Lisp
Machines. When each host boots, it creates a copy of the idle time “server” daemon. This
daemon remains dormant until it detects the machine is idle. Then the daemon wakes up
and reads a job specification file from a central host. It picks a job to run and executes
it. Synchronization and the division of labor are specified by the application the daemon is
executing, not by the daemon itself.

If a job is interrupted by an error, it quits and the daemon goes back to the central job
specification file to see what to do next. An arbitrary “clean up” procedure can be associated
with a job, and is executed whenever the job exits (write to a log file, etc.). The job specification
also allows for a maximum execution time for a job (kill it after N minutes of CPU time),
uniqueness (only one copy of the job is run at a time) or logging (start and stop times are
logged in a central file). If the central job description file is unavailable, the daemon goes to
sleep until it can re-open it.

The system is not tied to any particular task. Applications have included running diagnostics

on a connection machine, and ‘frivolous console animations’.

5.5 File based system at NYIT

While at NYIT, Paul Heckbert developed a scheme for soaking up the idle time on eight Vaxes
there. Because the systems went down at least once a day for backups and loads across machines
were uneven, the system had to be fault tolerant, de-centralized and able to deal with loaded
and unloaded machines.

The boot script for each of the vaxes was modified to start a daemon responsible for running
the computation. This daemon would read a “job/log” file containing a list of shell commands
to run and the status of each. For example, a job/log file for computing five frames of animation
might look like this:

done(vaxb, vaxg) gen.sh 0
done(vaxc) gen.sh 1
done(vaxa) gen.sh 2
running(vaxa) gen.sh 3
- gen.sh 4

This file means that frames zero through two are done, frame zero was computed on two
machines (vaxb and vaxg), frame three is being computed on vaxa, and frame four hasn’t
started yet.

The daemon read this file and picked a job to run based on the following priorities:

*This is much like the applications for the Xerox PARC “Worm” program.

1. If a job is listed as running on the machine reading the file, then it must have crashed,
so resume work on that job. The ray tracing program was written so it could resume
computation in mid-job to minimize lost work.

2. Run an unstarted job, if any are left.

3. Run a running job. This is useful in the case of a another machine crashing or slowing
down due to a heavy load.

Each machine decides which jobs to run, there is no single master machine. Just before a
machine started up a job, it would update the status in the job/log file and then copy it over
the network to the other machines in the pool. The shell script started by the daemon saved
its output in a common directory. This was inspected once a day and the results transferred to
a big disk.

The system was used for three large jobs:

¢ An animated sequence of 120 ray-traced frames. It took 84 CPU-days over a period of 19
days on seven Vaxes (six Vax 780’s and one Vax 750);

e An eight CPU-day ray-traced image of a morphine molecule (computed at a resolution of
2048x2048);

e Computing all amicable number chains up to 200,000,000 (a number theory problem).

On the larger jobs, the system was able to use 65% to 75% of the available CPU time.
It was able to recover from machine crashes and shutdowns, and ran around the clock on
seven machines for several weeks. The only significant problem was the job/log files becoming
inconsistent on the various machines, probably because there was no locking scheme for the

job/log files.

5.6 Systems at Xerox PARC

While at Xerox PARC Steve Schiller developed a system for using approximately 100 worksta-
tions to compute an animated sequence of fractal images. In that system, one of the worksta-
tions served as the main dispatcher for the computation. It made a remote procedure call to a
worker machine, giving it the parameters for computing a particular frame. When the worker
finished computing the frame it would inform the dispatcher that it was finished. It was up to
the dispatcher to actually retrieve the frame. The dispatcher could also ask a worker if it was
busy, and if so, when it expected to finish the frame. If somebody logged into the machine,
the computation stopped, and the work was re-queued on the next available machine (code
was implemented to re-start partial frames, but became a source of trouble and was dropped).
The computation times ranged from five minutes to one hour per frame, depending on the
complexity of an image (twenty minutes was the average).

The scheduling of the computations was complicated by disk space constraints on the dis-
patcher. The frames had to be recorded by the camera in the correct order and then removed to
make room for new frames. However, the workers might not have finished them in the proper
sequence. Since the dispatcher had only twenty frames worth of available disk space, there
would occasionally be times when the dispatcher could not retrieve a frame because it didn’t

have enough disk space. (Of course, enough space must be available for the frame the camera
is waiting on).

In order to help avoid this problem, the dispatcher kept track of all of its outstanding frame
requests and when they were made. When it wasn’t busy with anything else it checked the
machine working on the frame the camera was waiting on. If that machine was unreachable
(crashed, net problems, somebody logged into it, etc.) or was taking a suspiciously long time,
then the dispatcher re-assigned the frame to the next free machine. A log was kept of when
each frame was retrieved, how long it took to complete it and the name of the machine that
worked on it. This was useful for pinpointing slow or unreliable workers.

Once the kinks were worked out, the system was fairly reliable. Schiller estimates about
nine out of ten 48 hour runs were without incident. The system achieved approximately 80%
parallelism during operation.

5.7 Work with finer-grained parallelism

More recently at PARC, Frank Crow has experimented with using groups of workstations to
compute single images, rather than animation. The distribution is done with the Xerox Com-
pute server (described above). Instead of decomposing the problem by dividing the image up
(as most approaches presented above), Crow rendered individual objects in the scene on differ-
ent processors. These objects must be linearly separable (see [2]), so the method is restricted
to ‘2.5D graphics’. The motivation for this method is that it is easier to predict the time to
render a given object rather than the time to compute a slice of an image.

The system was initially tested on images with a small number of linearly separable shapes.
These were sorted by depth on the “home” (dispatcher) machine and sent to other worker
machines for rendering. Fach worker would render the pixels in the bounding rectangle of the
shape, and return this image along with a coverage mask for the shape[8]. Finally, the images
were composited together on the dispatcher machine.

The improvements gained by distributing the work this way were not substantial. Some
statistics of the system’s operation were gathered, such as which processor got what job, how
long it took, and how much time was spent compositing the images together. This revealed three
important things: 1) Some shapes took much longer to render than others; 2) The processes
were unevenly distributed to the processors; and 3) The final compositing phase was taking
long enough to prevent dramatic speedups on complex images. The process distribution itself
was also a source of overhead, as data files had to be shipped out and images collected.

Some steps were taken to improve the benefits of distributing the work. Since the disparity
between rendering times for different objects was much larger than expected, some heuristics
were developed for estimating the cost of rendering an object, and allowing it to be rendered in
several strips. The compositor was also substantially optimized, reducing a major bottleneck.
With these improvements in place, Crow was able to improve the parallelism to over 30%. Crow
describes the system as “Work in progress” — it has no doubt improved substantially since the
paper was written.

6 The Distrib System

At the University of Utah Computer Science Department a system called Distrib (developed
by Rod Bogart, Glenn McMinn and the author) is currently in use for distributing animation
computations over a large network of workstations. The computing environment used by Dis-
trib consists of a large network of workstations, including Apollos, Suns, and a large number
of Hewlett Packard Series 9000/300 machines. All of these machines are accessible over the
Ethernet using the TCP/IP protocols, and all run some variant of Unix. A Vax 11/785 with a
large amount of disk space serves as the central dispatcher machine where Distrib runs.

6.1 Operation

Distrib reads as input two files, one containing a list of jobs to execute and the other a list
of machines to execute them on. The job file specifies for each job the input and output data
files to use, the script to execute on the remote machine, and the parameters for that job
(scanlines to render, frame number, rendering options, etc.). The machines file describes where
the files (programs, texture maps, data files, etc.) live on each machine, and also specifies any
restrictions on the use of a given machine. Machines can be set up in three ways:

Unrestricted Distrib uses the machine without reguard to time of day or if some-
body is logged in. This mode is used for lightly used machines, where the
additional rendering job doesn’t cause a major impact. (Users of the machine
are always able to kill the job if it does get in the way).

Unoccupied Distrib only uses the machine if nobody is logged in or running a
“screensaver” program.

Night only Like unoccupied, except that if Distrib finds the machine in use it
won’t even check back until the evening (or weekend).

As explained below, it’s possible to change these restrictions while Distrib is running.

When Distrib starts it reads in the job and worker machine description files. For each
worker, Distrib copies the appropriate data files to the worker, using the Unix rep program.
It then uses the rexec routine to start the computation on the worker. Rezec returns a socket
file descriptor that listens to the remote process on the worker machine. Once all of the hosts
are started, Distrib listens to all of the rexec connections simultaneously with the select system
call.

When the select call returns, (indicating activity on one or more of the sockets) Distrib looks
at the messages returned by the worker machines. If the message indicates successful completion
of the job, Distrib collects the results from worker (verifying the transfer) and cleans up the
data area on the worker. If the worker machine was specified as restricted, Distrib makes sure
the machine is still available (i.e., nobody has logged in) before starting another job on it.

If the message from the worker’s socket indicates failure (e.g., the process is terminated
by somebody logging in, the job stops unexpectedly with an error, or the socket simply closes
because a worker crashes) Distrib acts according to the machine’s restriction. If the machine
is “unrestricted”, Distrib marks it as “down”, and waits an hour before trying to re-use it. If
a machine is marked as “restricted”, Distrib marks it as “occupied” and waits until it is free
before trying to use it again. In any case, the aborted job is re-queued on the next free machine.
Distrib maintains an extensive log of all of this activity.

10

6.2 Problems encountered

Several interesting problems were encountered in the process of getting Distrib to run reliably.
In the original version an rsh process was forked to start the remote process instead of using
rexec. Instead of returning a socket, this returned a process ID and the wait system call was
used to detect when jobs were finished. While simple to implement, this uncovered a number
of problems. Most noticeable was that because each rsh created two processes, the Distrib
program quickly exceeded the Unix limit of the number of processes a user is allowed to have
when a large number of workers were used.

In the original versions of Distrib, a job’s input data was copied from the dispatcher by each
of the individual workers. Distrib would spawn the all workers simultaneously, and they would
all start asking the dispatcher for data at the same time. This flooded the dispatcher with
I/0 requests, and often some of the requests would fail because system limits were exceeded.
Distrib now copies the necessary files to the workstation before starting the job on it. This
serializes the I/0, and prevents the dispatcher from being swamped with file requests.

Because TCP/IP is a “reliable” protocol, connections will not time out once they are ini-
tiated. In one case, a worker crashed as the data files were being copied to it, and Distrib
became hung waiting for the transfer to complete, preventing it from starting work on other
machines. It now sets up a “watchdog” timer before sending or retrieving files from workers. If
the transfer doesn’t complete before the timer runs out, Distrib receives a signal and the job is
aborted. The worker is marked as “down” and the job is re-queued.

6.3 Interaction with Distrib

A Distrib run may last for several days. During this period of time, it’s useful to be able to
interact with Distrib to inquire about the status of the jobs or to make minor adjustments to
its state. To accommodate this, Distrib listens to a “command” socket in addition to the rexec
sockets. When a connection is made to this socket (usually with a utility like telnet) the user
can interact with Distrib and find out exactly what the status of the computation is. This is
usually much quicker than trying to get the same information from Distrib’s log files, which
become quite large during a long run.

Another use for the command socket is to change the state of the machines Distrib is
controlling. For example, an unrestricted machine can be changed to restricted if Distrib was
interfering with its normal use, or a recently re-booted machine can be changed from down to

up.

6.4 What if Distrib dies?

The advantage to using the rexec connection is Distrib knows exactly when a workstation finishes
(or aborts). There is no periodic polling needed to get a worker’s status. A disadvantage
to this approach is that most of Distrib’s state is in the form of open rexec sockets. If the
machine Distrib is running on goes down, there is no way to recover this information. When
the dispatcher dies, the usual approach is to wait an hour or so for most of the workers to finish
their jobs.* Scripts are then run to collect any finished work, kill any remaining jobs, and clean

*i.e, go out for pizza. ..

11

up the worker data directories. A new job file is made by subtracting the finished work from
the original job file, and Distrib is re-started.

This problem could be solved by making the system running on the worker end more in-
telligent. The worker would have two processes, one to do the rendering and the other to talk
to Distrib. This second “supervisor” process could detect if Distrib went away, and listen for a
new Distrib if it did. When Distrib is restarted, it would contact all of the supervisor processes,
determine their state, and pick up the computations based on this information. Fortunately,
the Vax Distrib is usually run on has proved quite reliable, so motivation to implement this
scheme has been low.

6.5 Some Results

Some example Distrib runs include:

o A high resolution still of a butterfly. The image was computed at 1024x1024 pixel reso-
lution. The jobs consisted of ray-tracing 32 horizontal strips of the image. It took three
hours elapsed time using 13 idle HP Series 9000/320 machines. The total CPU time used
was 27 hours, so the computation achieved about 70% efficient parallelism.

e A simple animated station logo (approximately two seconds worth). It took 24 hours
elapsed time using 30 workstations. The total CPU time used was 24 days, 10 hours
(about 80% efficient).

¢ Another run for producing twelve seconds of animation took 64 hours of elapsed time. It
ran on 60 workstations (some of them un-available during the day). The total CPU time
was three months, 3 days and 20 hours (2252 hours), about 57% efficient.

In most of these cases, production deadlines were met that would not have been possible
without a facility like Distrib.

7 Conclusions

There are some consistent features in the systems presented above. Almost all of them provide
facilities for logging the activity performed. Since the computation involved often extends over
hours or days, there is no other way to supervise the work. Log files are often the only way to
debug the system when it’s actually in use.

Fault tolerance is an important issue. Even if the average reliability of a machine is good
(say, only one shutdown or failure a month), this decreases rapidly as you use more machines
(e.g., 30 machines gives you one failure a day). Without at least some facility for dealing with
worker failures, a distributed computation system often grinds to a halt.

The computing resources offered on a typical large workstation network are substantial —
often equivalent to a single supercomputer. Since computer animation is an easily decomposable
and large-grained problem, it makes an ideal problem for solving with distributed computation.

12

8 Acknowledgements

I would like to thank the many people who responded to the Usenet survey and took the time to
write up their experiences, Jules Bloomenthal at Xerox PARC for providing information about
recent work there, and Jay Lepreau for pointing out recent work with Unix. Glenn Mcminn
and Robert Mecklenburg gave the paper a good critical reading.

Peter Ford, Mark Bradakis, and “Charlie Root” provided us with valuable assistance while
getting Distrib running.

We would also like to thank the Hewlett Packard corporation for their generous gift of HP
workstations. These systems allowed us to work on a very large scale.

This work was supported in part by DARPA (DAAK1184K0017) and the National Science
Foundation (MCS-8121750). All opinions, findings, conclusions or recommendations expressed
in this document are those of the author and do not necessarily reflect the views of the sponsoring
agencies.

VAX is a trademark of Digital Equipment Corporation. Unix is a trademark of AT&T.

References

[1] F. C. Crow. Fzperiences in Distributed Frecution: A Report on Work in Progress. Tutorial
Course Notes: Advanced Image Synthesis, ACM-SIGGRAPH, August 1986.

[2] F. C. Crow. A more flexible image generation environment. Computer Graphics, 18(3),
July 1984.

[3] T. H. Dineen, P. J. Leach, N. W. Mishkin, J. N. Pato, and G. L. Wyant. The network
computing architecture and system. In Proc. 1987 Summer Useniz Conferance, Usenix,
June 1987.

[4] R. Hagmann. Process sever: sharing processing power in a workstation environment. In
6th Intl. Conf. on Distributed Computing, IEEE, Cambridge, MA, May 1986.

[6] M. J. Litzkow. Remote unix — turning idle workstations into cycle servers. In Proc.
Summer Useniz Conferance, Usenix, Phoenix, A7, June 1987.

[6] Michael Muuss. Solid Modeling System and Ray-Tracing Benchmark. Distribution Release
Notes, U.S. Army Ballistics Research Lab, December 1986.

[7] John W. Peterson. A System For High Quality Image Synthesis. CS Project Memo 86-01,
Unversity of Utah, June 1984.

[8] Thomas Porter and Tom Duff. Compositing digital images. Computer Graphics, 18(3):253,
July 1984. Proceedings of SIGGRAPH 84.

[9] John F. Shoch and Jon A. Hupp. The worm programs - early experience with a distributed
computation. Communications of the ACM, 25(3):172, March 1982.

[10] Turner Whitted. The Hacker’s Guide to Making Pretty Pictures. Tutorial course notes —
Image Rendering Tricks, ACM-SIGGRAPH, August 1986.

13

