
Ray Tracing Spline Surfaces With Motion Blur

John W. Peterson�

September 10, 1998

Abstract

An algorithm for ray tracing B-spline surfaces is described. It is based on preprocessing

the surface with adaptive subdivision to build a polygonal representation of the surface,

and hierarchical bounding volumes around the polygons. This allows for very e�cient ray

surface intersections, and avoids complex numerical methods. The algorithm is extended

to allow for motion blur without sacri�cing e�ciency. An adaptive anti-aliasing method is

also presented.

Categories and Subject Descriptors: I.3.7 Computing Methodologies: Computer

Graphics| picture/image generation, three-dimensional graphics and realism, computa-

tional geometry and object modeling

General Terms: Algorithms

Key Words and Phrases: Image synthesis, ray tracing, raster graphics, motion blur,

anti-aliasing

1 Introduction

Over the past several years ray tracing has become the predominant method for generating

high quality images of three dimensional scenes. Since the introduction of an elegant recursive

�Department of Computer Science, University of Utah, Salt Lake City

1

jpeterso
The date shown here is from when it was last formatted. The paper was written in 1987.

shading model by Whitted [24], a large amount of subsequent research has made it a very

powerful technique.

The fundamental operation of ray tracing is computing the intersection of a ray with an

object. This operation usually consumes most of the time during a ray tracing operation.

While this operation is relatively simple for surfaces de�ned by polygons or simple geometric

primatives [19] the calculations for free-form surfaces has proven much more complex.

This paper presents a new method for ray tracing free-form objects. The surfaces rendered

by this method are non-uniform, rational B-spline surfaces. By using non-uniform surfaces, it is

not necessary to break down surfaces into individual polynomial patches for rendering, and the

continuity and curvature changes may be exactly speci�ed. Rational surfaces (i.e., using a fourth

homogeneous coordinate) allow solids derived from conic surfaces (spheres, cones, cylinders, etc)

to be speci�ed exactly. There is also no restriction on the order of the polynomials de�ning

the surface. Alternate surface representations such as Bezier or Hermite patches are easily

converted to B-spline form [2].

The paper gives a brief review of other techniques for ray tracing splines, and describes

a method based on subdividing the surface into a polygonal mesh approximating the surface.

Section 4 shows how this technique is extended to allow for motion blur in a direct manner. Fi-

nally, an adaptive anti-aliasing method is presented that signi�cantly reduces the time required

to produce anti-aliased images.

2 Ray Tracing B-splines

Most previously published approaches to ray tracing free-form surfaces have been based on nu-

merical methods. Kajiya [9] uses ideas from algebraic geometry to obtain a numerical procedure

for �nding the intersection of a ray and a patch. Toth [23] uses techniques from interval analysis

to �nd a starting guess for Newton's method. A bounding box (the \interval extent") is formed

about the surface. If it can be determined that Newton iteration for a ray-patch intersection

2

converges within an interval, the algorithm tries to solve for the intersection. Otherwise, the

interval is subdivided and the procedure repeats.

Joy and Bhetanabholta [7] use a combination of heuristics and numerical methods. The

numerical techniques are based on using Quasi-Newton methods to �nd a local minimum for

the distance between a ray and the patch (the ray intersects when it reaches zero). The heuristic

portion of the algorithm uses ray coherence | the starting guess of a given ray is based on

the intersection point of the previous ray to intersect a given surface. Joy uses octree cells to

restrict the search space of ray-patch intersections. The cells are also used to help identify cases

where the heuristics may fail.

Sweeney and Bartels [21] also implemented a ray tracing method based on Newton iteration.

In their scheme, a hierarchical tree of bounding boxes is constructed around a surface. The

bounding boxes are based on the surface's control mesh after it has been re�ned using the Oslo

algorithm. The leaf nodes of this tree of bounding boxes contain a starting guess for using

Newton iteration to �nd an intersection with that region of the patch. To intersect a ray with

a patch, the ray traverses the tree of bounding volumes using a method presented in [8]. If

a leaf node is reached, the intersection procedure uses Newton iteration to try and �nd the

actual intersection point. Another implementation of Sweeney's algorithm that handles a more

general form of B-Splines is presented in [14].

There are several problems with numerical techniques. The numerical algorithms are com-

plex, and often require a substantial amount of computation for each ray-surface intersection

test. They are prone to stability problems and erratic behavior with some special cases. They

are often based on a number of \tolerance" values that must be occasionally adjusted for

di�erent models or rendering environments. The complexity of the algorithms also makes im-

plementation in hardware very di�cult. The method presented here avoids these problems. It

is straightforward to implement and numerically stable.

3

3 Improved method

3.1 Overview

The new technique presented here is based on subdividing the surface using the Oslo algorithm.

Subdivision is performed until the control points of the surface approximate the surface within a

resolution determined by the surface's appearance on the screen. As the surface is subdivided a

tree is built with polygons at the leaves. This tree is used to form a set of hierarchical bounding

volumes around the surface. Ray-surface intersection is performed by intersecting the ray with

the bounding volumes (as in [10]) and then testing the ray against the triangle at the leaves.

The method is similar to the method used by Lane and Carpenter for scanline rendering [12],

except the surface is fully subdivided as a pre-processing step before ray tracing begins.

3.2 Rational, non-uniform B-splines

A non-uniform rational B-spline surface is de�ned in polynomial form as:

F(u; v) =

Pm
i=0

Pn
j=0Pi;jBi;k(u)Bj;l(v)Pm

i=0

Pn
j=0wi;jBi;k(u)Bj;l(v)

where Pi;j are an n � m array of control points for the surface and wi;j are the weighting

factors (homogeneous coordinates) for de�ning rational surfaces. The Bi;k(u) and Bj;l(v) are

the B-spline basis functions, completely de�ned by the orders k and l (respectively) and knot

vectors fupg
n+k
p=1 and fvqg

m+l
q=1 (respectively). A more complete treatment of these surfaces may

be found in [22, 2, 1].

3.3 Surface Subdivision

The subdivision procedure �rst tests to see if the surface is
at by testing the linearity of the

edges and curves in the u and v directions. \Twisted" surfaces are detected by making sure

the four corners lie in the plane. If a surface is not su�ciently
at, it is then subdivided. The

subdivision is performed by adding a multiple knot with multiplicity k (if subdividing in the u

direction) or l (if subdividing in the v direction) in the center of the knot vector. The surface is

4

Figure 1: Subdividing a surface by inserting a multiple knot in the center

re�ned with the Oslo algorithm [4] to add additional control points to the surface corresponding

to the extra knots. The re�ned surface now has two control polygons interpolating the surface

along the centerline, and can be separated into two new control meshes which together represent

the original surface (�gure 1).

If the surface is
at in one direction but not another (e.g., a cylinder) then the surface

is subdivided only in the direction that is curved. Otherwise, the parameter the surface is

split along alternates directions at each level of subdivision. If a surface is
at enough in both

directions, two triangles are formed from the four corner points, and they are converted to

Euclidean space by dividing out the rational (homogeneous) coordinate. Figure 2 shows the

polygonal representation of a dart generated by the subdivision procedure.

An important detail in surface subdivision is \crack prevention." If one surface is subdivided

more than another one, cracks can form in the �nal polygon mesh if it is derived directly from

the control points. This is prevented by checking to see if a surface is adjacent to a straight edge

(one meeting the
atness criterion) before subdividing it. If it is, the midpoint of the straight

edge is used instead of the control point, preventing cracks from appearing (see �gure 3.)

5

Figure 2: Polygons generated by recursive subdivision

Figure 3: a. A crack resulting from subdivision, b. Crack avoided by interpolating the edge

6

In the Lane and Carpenter algorithm, the
atness criterion compares the
atness of the

surface to the size of one raster unit in screen space. In the case of ray tracing however, the

subdivision resolution must be determined in object space, since no perspective transformation

is done on the objects. In order to �nd the
atness criterion, the projection from object space

to screen space must be done explicitly.

Because of the convex hull property of B-splines [1], a reasonable approximation is to �rst

�nd a bounding box for the surface by �nding the minimum and maximum values of its control

points. The center point of this bounding box is found, and the distance from it to the eyepoint

is calculated. The object space resolution then becomes:

subdiv res = (2 � viewsize � (�dist + viewdist)=(viewdist � number of pixels)

where dist is the distance from the center of the surface to the eyepoint, viewsize is the \radius"

of the image plane, viewdist is the distance from the origin of the initial rays to the viewing

plane, and number of pixels is the size of the �nal image raster.

While subdivision with the Oslo algorithm requires more computation than the methods

presented in [3, 18, 12], it is only done once as a preprocessing step, which is minor compared to

the time spent on ray tracing the scene. It also allows for much more general surface de�nitions.

In order to generate the bounding volumes for the ray tracing process, a tree is constructed

as the surface is subdivided. The root node is created with the original surface, and two children

are created every time the surface is split. This continues until the subdivision generates two

triangles (i.e., the surface was
at enough) which become leaf nodes of the tree.

Once the tree is built, a set of hierarchical bounding boxes is built around the subdivision

tree. A bounding box is formed by �nding the maximum and minimum extents of each pair

of triangles at the leaf nodes. The bounding boxes are grouped hierarchically by �nding the

union of each successive pair of nodes up the tree (�gure 4). These bounding boxes are used

for �nding the ray surface intersection by using a traversal algorithm such as [10].

7

Figure 4: Hierarchical bounding volumes constructed around a re�ned surface

3.4 Ray-triangle intersection

During the ray tracing process, a ray traverses the hierarchy generated by the subdivision

processes. If it reaches a leaf node containing triangles, the following procedure is used to see

if a ray intersects them.

In order to perform ray-triangle intersections, barycentric coordinates are used on each of

the triangles [2]. This introduces two coordinates r and s along the two sides of the triangle

that map its sides onto half of a unit square (see �gure 5). For symmetry a third coordinate is

introduced, t = 1� (r + s). These coordinates have the property that:

1 = r + s + t

Barycentric coordinates are also used for interpolating normals and texture mapping parame-

ters.

In order to easily convert from a point in three space in the same plane as the triangle to

the barycentric coordinates of the triangle, a system of equations is computed for each triangle:2
64 V0x V1x V2x
V0y V1y V2y
V0z V1z V2z

3
75
2
64 r

s
t

3
75 =

2
64 px
py
pz

3
75

where V is the vertices of the triangle, and p is the point where the ray intersects the plane

8

- r

6
s

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@
@
@
@
@

t

6

?
� -� -� -

s

r s t

Figure 5: Barycentric coordinates

9

of the triangle. If we simply use the inverse of V for calculating r, s, and t from a given

point p, problems arise because the inverse of the matrix becomes unstable (degenerate) when

the triangle lies on or near one of the coordinate planes. In order to avoid this, a row of

one's is added to the bottom row of the matrix and the point in three space (representing

1r + 1s+ 1t = 1). Now the computation becomes:2
6664
V0x V1x V2x
V0y V1y V2y
V0z V1z V2z
1 1 1

3
7775
2
64 r

s
t

3
75 =

2
6664
px
py
pz
1

3
7775

With this method, we �nd a matrix Q with a least squares solution[20]:

Q = (VtV)�1Vt

This method is stable independent of the triangle's orientation. Since the t coordinate is easily

determined from r and s, only the �rst two rows of the Q matrix need to be computed and

stored for each triangle.

To test if a ray intersects a triangle, we �rst �nd the point, p, where the ray crosses the

plane the triangle is in. r and s are found with:

pQ =

"
r

s

#

and
t = 1� (r + s)

If any of r, s or t are outside the range 0 � x > 1, then the ray misses the triangle. If an

intersection does occur, then r, s and t may be used for linear interpolation of the normals and

surface parameters (u; v) for texture mapping:

Ninterp = rN0 + sN1 + tN2 =

2
64 N0x N1x N2x

N0y N1y N2y

N0z N1z N2z

3
75
2
64 r
s
t

3
75

where Ni is the normal at each vertex.

In the next section we show how this algorithm is modi�ed to accommodate for motion blur.

10

t t t t t t t t

1 2 3 4 5 6 7 8 18 19 20 21 22 23 24

bbb bbb bb b bb b b bb bbb bbb b bb bbb bbb b bb b bb bbb b bb bbb b bb

Figure 6: Pre{sampled times (three samples per time segment)

4 Motion blur

Motion blur is a means of removing temporal aliasing from animated sequences [11]. It also

provides a unique way of showing the dynamics of a moving system in a single image.

The algorithm presented in [6, 5] is a conceptually simple technique for anti-aliasing called

distributed ray tracing. Anti-aliasing is performed for each pixel by taking a number of samples

that are distributed spatially (for spatial anti-aliasing) and at di�erent points in time (for

motion blur). Distributed ray tracing also provides for penumbra, di�use re
ections and depth

of �eld blur, although these issues are not addressed here.

4.1 Rendering moving surfaces

Motion blur is complicated because the objects need to be sampled as they move to di�erent

positions in space, yet we don't wish to lose the bounding box information developed above |

moving a large tree of polygons for each ray would be prohibitively expensive. The solution is

to \move" the rays to the objects instead of moving objects to the rays.

In order to accomplish this the time for an image is pre-sampled. For example, if we are to

use 25 samples for a given pixel (i.e., a 5 � 5 sampling grid), we would divide the frame time

into 25 even segments. To provide for stochastic sampling, a small number of random times are

selected from each segment (e.g., 25 segments � 3 samples per segment) 75 samples) (�gure

6).

11

For each moving surface, a blur matrix and its inverse are pre-computed for each of the

sampled times. The surface itself (and the hierarchy of bounding volumes around it) is de�ned

in a canonical space (e.g., about the origin). The top level node in the tree describing a moving

surface has an array of blur matrices transforming it into the proper position for each pre-

sampled time. To intersect a ray with a moving object, we �rst transform the ray by the

inverse blur matrix for the time the ray was �red. Once transformed, the ray proceeds down

the tree looking for an intersection as discussed above.

If the ray intersects the object, the intersection point and surface normal are transformed

back into the original scene space, using the original blur matrix. If this intersection point is

the closest to the ray's origin, it is used for subsequent illumination calculations.

If a single moving object is modeled with a group of surfaces, then these surfaces can be

enclosed in a single bounding box, and only one set of blur matrices is needed for the whole

object. If a moving object contains moving components, the situation is more complex. For

example, consider a moving airplane with a spinning propeller. In order to compute a bounding

box for the entire plane, we need to �rst �nd the union of the propeller's bounding boxes at each

of the time samples for the image (these bounding boxes would be computed in the coordinate

system for the airplane). Once the union for these boxes is found, a bounding volume for both

the airplane and the propeller can be computed. A ray intersecting the propeller would be bent

twice | �rst into the airplane's coordinate system, and again into the propeller's coordinate

system.

4.2 Temporal aliasing issues

Aliasing can be caused by correlations between an object's direction of travel and the spatial

position of the time samples within the pixel. Because of the limited number of time samples

used for a given image, care must be taken to avoid artifacts from making the time samples

at the same positions in the pixel. Cook recommends using a precomputed square of sample

indices, with the time segments chosen according to a pre-computed grid (�gure 7). The time

12

7 11 3 14

4 15 13 9

16 1 8 12

6 10 5 2

Figure 7: Sample time distribution square (from [5]).

Figure 8: a. Motion blur using the same time sample square origin. b. Motion blur using

random time sample square origin.

segment chosen for each sample is based on the number in the square corresponding to the

sample's spatial position within the pixel.

Even with such a distribution method patterns may still be visible (�gure 8a). In order to

avoid this, the time segments are by selected by choosing a random origin for the sample index

square, and letting the indices \wrap around." Figures computed this way are free from the

artifacts (�gure 8b).

13

5 Adaptive super{sampling

Super-sampling an entire image is usually too expensive, so various techniques are used to

perform super-sampling only where necessary. The �rst, presented in Whitted's original paper

[24] looks at the values at the corners of the pixels. If they di�er by a speci�ed tolerance, then

the pixel is subdivided, and the corners of each of these sub-pixels is sampled and compared

again. The process continues until the di�erence between adjacent samples falls below a given

tolerance or the total number of samples for a given pixel exceeds a pre-set limit. This algorithm

does not work well with motion blur, since the initial rays can easily miss moving objects.

Lee, Redner and Uselton [13] present a scheme based on statistical theory for determining

the number of samples needed for a given pixel. After an initial set of samples is cast, it

determines if additional ones are necessary by analyzing the statistical variance of these extra

samples. When the statistical \con�dence estimate" of the returned samples falls below a preset

tolerance, the method quits sampling.

Experience with this this algorithm, however, indicates two problems with this approach.

First, for the statistical measurements to be valid, a non-trivial number of initial samples must

be made before the statistical analysis can produce useful results. For example, Lee et. al.

used eight initial samples per pixel. However, in areas of the image with low spatial frequences,

only one sample per pixel is usually su�cient. Second, the statistical analysis reaches only

two conclusions for a large majority of the pixels: Either the minimum number of samples was

su�cient, or the maximum number of samples allowed was required.

5.1 The pixel thresher

Since Lee's method tends to require more samples than necessary to obtain an acceptable

image, a simpler scheme was developed for performing adaptive anti-aliasing. The method is

an extension of Whitted's scheme of comparing adjacent pixel intensities. If a pixel has a value

signi�cantly di�erent from its neighbors, it is super-sampled (if it hasn't been already). Since

14

the act of super-sampling the pixel may change its value, the values of surrounding pixels are

also checked, and super-sampled if they are di�erent. These changes are propagated across

previously sampled scanlines as well as adjacent pixels.

In order to keep track of the comparisons, a data structure called the thresh bu�er is kept

for several of the most recently rendered scanlines. The thresh bu�er contains the following

�elds for each pixel:

color The color of the pixel (e.g., the red, green and blue values).

coverage The coverage of the pixel, determined by how many rays �red from this

pixel actually intersected an object in the scene. This is used for compositing

ray traced images on other backgrounds (see [16, 15]).

ss
ag A boolean
ag, set to true if the pixel has been super-sampled.

changed A boolean
ag, set to true if the pixel has changed value (either an initial

sample, or because of super sampling).

The algorithm is shown in �gure 9.

The pixel di� routine compares the current pixel to its neighbors. It only compares the

color and coverage values if the pixel has not been super sampled (ss
ag false) and at least one

of the two has changed (changed is set), otherwise the test is redundant. This heuristic works

because pixels in need of super-sampling are most often adjacent to each other (e.g., edges of

objects).

By varying the times of the initial rays, this approach works particularly well with moving

objects. If all of the initial rays were cast at the same time, the object would only be sampled

at that point along its path. In order to avoid this, a sample time grid (much like the one

used within a single pixel in section 4.2) is used for determining the time of the initial rays.

When one initial ray intersects the object as it moves along its path, the pixel thresher �nds

this initial sample di�erent from the surrounding ones, and eventually super-samples the entire

path of the object.

15

f Add an initial row of samples to the thresh bu�er g
for each scanline in the image

for each pixel on the current scanline do

get an initial sample

ss
ag false

changed true

do

for each row in the thresh bu�er do

pixels changed false

for each pixel in current row do

if not ss
ag and

(pixel di�(above) or
pixel di�(below) or
pixel di�(left) or
pixel di�(right))

then

super sample current pixel

ss
ag true

changed true

pixels changed true

while pixels changed

Output oldest row in thresh bu�er

f Clear changed
ags before adding next row g
for each row in the thresh bu�er do

for each pixel in current row do

changed false

Figure 9: The pixel thresher algorithm

16

Figure 10: Stationary version of the logo

The heuristic used by the pixel thresher fails if isolated subpixel details occur in the image.

This could be mitigated by using more than one sample in the initial sample set. In practice,

this hasn't been a problem. Figures 11b and 12b show (in red) which pixels were super-sampled

for some sample images. Most of the super-sampling is concentrated around the high frequency

or blurred portions of the image.

6 Results and Summary

The method for ray tracing splines presented here was compared to a numerical method previ-

ously implemented by the same author [14]. For typical images (such as �gure 12) the method

presented here is more than twice the speed of the numerical methods. It has also proven

much more stable, since the algorithms used are free from stability and convergence problems

inherent with numerical methods.

The ray tracing program is part of the Alpha 1 geometric modeling system developed at the

University of Utah [17]. Alpha 1 provides an extensive set of tools for modeling objects with

B-spline surfaces. The ray tracing package provides a way to get much higher quality images

17

Figure 11: a. Motion blurred object. b. Pixels super-sampled in a.

Figure 12: a. Dart. b. Pixels super-sampled in a.

18

Figure 13: Gun model

than is possible using interactive techniques. The motion blur facilities allow the creation of

animation without temporal aliasing e�ects.

Figures 10{13 demonstrate some objects modeled with Alpha 1 and rendered with the ray

tracing package. Figure 10 shows a three dimensional logo modeled with quadratic B-splines.

In �gure 11a, the ring surrounding the four is rotating and moving during the frame. Figure 13

shows a gun model developed with Alpha 1. The model uses a wide variety of surface types, e.g.,

at surfaces in the body, rational quadratic surfaces (the barrel) and free-form cubic surfaces

(the handle).

7 Conclusions and future work

The development of the algorithm for ray tracing splines presented here is similar to the evolu-

tion of scanline algorithms several years ago. In the case of scanline algorithms, approximating

the surface by subdivision techniques is generally prefered now over using complex numerical

methods, because it is more stable, more e�cient, and less complex. The results of this work

indicate the same is true for ray tracing.

19

The polygonal approximation method for ray tracing splines does represent a tradeo� be-

tween CPU time and memory usage since it requires the polygonal representation of the spline

and the tree of hierarchical bounding volumes to be stored during the ray tracing process. The

bene�t, however, is that the intersection calculation (usually the most time consuming portion

of the ray tracing process) executes much faster.

The use of a binary tree for the bounding volume hierarchy follows directly from the subdi-

vision process. One possible way to reduce the memory needed for the bounding volumes would

be to use a tree with a higher order than a binary tree. For example, if a new node in the tree

was created for every other subdivision performed, than each node would have four children

instead of two. This would decrease the number of nodes traversed before reaching a leaf, but

increase the number of intersection tests required at each node. Discovering the performance

tradeo�s (in terms of both memory usage and CPU time) has yet to be addressed.

The use of hierarchical bounding volumes allows the method to be extended for motion blur

while still maintaining an e�cient intersection algorithm. A heuristic adaptive anti-aliasing

method was developed allowing a small number of initial samples in the image. The method

does an e�ective job of performing super-sampling on only those pixels that are likely to require

it, even if there are moving objects in the scene.

8 Acknowledgements

The subdivision algorithm given in section 3.3 was originally implemented by Russ Fish and

Beth Cobb as part of a scanline oriented rendering program. The model in �gure 13 was created

by Glenn Mcminn, the dart in �gure 12 was created by the author and Tom McCollough, and

the logo in �gure 10 was created by Rich Riesenfeld. I would like to thank Rod Bogart and

Tom Malley for helpful discussion, and Beth Cobb, Spencer Thomas and Tom McCollough for

providing comments on drafts of this paper.

This work was supported in part by DARPA (DAAK1184K0017) and the National Science

20

Foundation (MCS-8121750). All opinions, �ndings, conclusions or recommendations expressed

in this document are those of the author and do not necessarily re
ect the views of the sponsoring

agencies.

References

[1] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to the Use of

Splines in Computer Graphics. Technical Report TR CS-83-09, University of Waterloo,
May 1985. Published as SIGGRAPH-85 Tutorial notes; also available from U.C. Berkeley
as TR UCB/CSD 83/136.

[2] B�ohm, Wolfgang, Gerald Farin, and Kahmann, J�urgen. A Survey of Curve and Surface
Methods in CAGD. Computer Aided Geometric Design, 1(1):3{60, July 1984.

[3] Ed Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD
thesis, University of Utah, December 1974.

[4] Elaine Cohen, Tom Lyche, and Richard Riesenfeld. Discrete B-splines and Subdivision
Techniques in Computer-Aided Geometric Design and Computer Graphics. Computer

Graphics and Image Processing, 14(2):87{111, October 1980.

[5] Robert L. Cook. Stochastic Sampling in Computer Graphics. ACM Transactions on

Graphics, 5(1):51{72, January 1986.

[6] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray Tracing. Computer
Graphics, 18(3):137{145, July 1984. (Proc. SIGGRAPH 85).

[7] Kenneth I. Joy and Murthy N. Bhetanabholta. Ray Tracing Parametric Surfaces Patches
Utilizing Numerical Techniques and Ray Coherence. Computer Graphics, 20(4):279{284,
August 1986.

[8] James T. Kajiya. New Techniques for Ray Tracing Procedurally De�ned Objects. Trans-
actions on Graphics, 2(3):161{181, July 1983.

[9] James T. Kajiya. Ray Tracing Parametric Patches. Computer Graphics, 16(3):245{254,
July 1982. Proceedings of SIGGRAPH82.

[10] Timothy L. Kay and James T. Kajiya. Ray Tracing Complex Scenes. Computer Graphics,
20(4):269{277, August 1986.

[11] J. Korein and Norman Badler. Temporal Anti-aliasing in Computer Generated Animation.
Computer Graphics, 17(3):377, July 1983.

[12] Je�rey M. Lane, Loren C. Carpenter, Turner Whitted, and James F. Blinn. Scan Line
Methods for Displaying Parametrically De�ned Surfaces. Communications of the ACM,
23(1):23{34, January 1980.

21

[13] Mark Lee, Richard Redner, and Samuel Uselton. Statistically Optimized Sampling for
Distributed Ray Tracing. Computer Graphics, 19(3):61{65, July 1985. Proceedings of
Siggraph '85.

[14] John W. Peterson. Ray Tracing General B-Splines. In ACMMountain Regional Conferance

Proceedings, page 87, ACM (Mountain Region), Santa Fe, NM, April 1986.

[15] John W. Peterson, Rod G. Bogart, and Spencer W. Thomas. The Utah Raster Toolkit.
In Lou Katz, editor, Proceedings of the Third Workshop on Computer Graphics, Usenix,
November 1986.

[16] Thomas Porter and TomDu�. Compositing Digital Images. Computer Graphics, 18(3):253,
July 1984. Proceedings of SIGGRAPH 84.

[17] Utah Alpha 1 Project. Alpha 1 User's Manual. University of Utah, Dept. of Computer
Science, Salt Lake City, Utah, 1986.

[18] Ron Pulleyblank and John Kapenga. The Feasibility of a VLSI Chip for Ray Tracing
Bicubic Patches. IEEE Computer Graphics and Applications, 7(3):33{44, March 1987.

[19] Scott Roth. Ray Casting for Modeling Solids. Computer Graphics and Image Processing,
4(18):109, 1982.

[20] Gilbert Strang. Linear Algebra and its Applications. Academic Press, New York, 1976.

[21] Michael Sweeney and Richard H. Bartels. Ray Tracing Free-Form B-Spline Surfaces. IEEE
Computer Graphics and Applications, 6(2):41, February 1986.

[22] Wayne Tiller. Rational B-Splines for Curve and Surface Representation. IEEE Computer

Graphics and Applications, 3(6):61{69, September 1983.

[23] Daniel L. Toth. On Ray Tracing Parametric Surfaces. Computer Graphics, 19(3):171{179,
July 1985.

[24] Turner Whitted. An Improved Model for Shaded Display. Communcations of the ACM,
23(6):96, June 1980.

22

