- _. CS 428 Lab 1: URUART

Design Review: Friday April 1 (Sign up for a time)
Working Hardware Due: Friday April 8
Lab Books Due: 4 P.M. Friday April 8

READING

Read the EIA RS-232-C handout, but don't panic as you will not have to
implement the whole thing. This document will give you some good scope as to
where your actual project fits into the scheme of things. It is also good
practice to read this kind of spec, as you will be doing a lot of this if you
are ever possessed enough to become a professional designer.

PURPOSE

Build a circuit similar to a UART, which is a very real part. of any computer
system. This lab is also intended to help bridge the gap between the previous
labs in Y427 which were intended to help you learn certain design techniques
and circuit phenomena, and the "real world" (whatever that is) of digital
circuits in computer applications. The project fits into the overall
framework of designing an entire computer during the scope of this course.
Your computer will need to communicate with a terminal.. Most terminals
produce signals which are governed by a particular protocol, the most common
is an RS-232-C ASCII protocol. A device which you can buy that sends and
receives this protocol is called a UART (Universal Asynchronous Receiver
Transmitter). There are several UART's - around, but just buying the part
doesn't teach you much, and therefore you will design one. Your UART will
allow you to communicate with a standard terminal at 4800 baud (4800
bits/second), and is functionally.simplified from the commercially available

type.

It will hopefully also be fun.
THE TERMINAL

The terminal sends RS-232-C ASCII information in a bit serial fashion at
certain standard voltage levels (known as EIA levels). Usually these EIA
levels have to be conditioned to be compatible with the logic levels of the
rest of URSYSTEM. Fortunately for you, the terminals we will be using will
provide TTL signal levels to URUART which will be built from the lab's CMOS
inventory. The pinout for the terminal, which will plug in to a standard 16
pin socket is:

RCV (data out) pin 16
XMT (data in) pin 12
Signal Ground pin 7

Chassis Ground pin 1 (use both)

-=- warning -- hake no connections to other pins. Voltages
are present at other pins which will damage the equipment.

hmy

Most terminals provide switches. to specify:

1. Half or Full Duplex

2. 0dd or Even Parity

3. Baud Rate

4. 1 or 2 Stop Bits

5. Some other stuff which you can ignore for now
We will assume for now that your UART will work at 4800 baud. We will assume
that parity is handled elsewhere and you are passing 7 bit ASCII with parity -

to yield an 8 bit wide character. The signal is passed in bit serial fashion
in the following format:

IvLF I0E

(%, Stary | LS B Peacry | STO® :S‘rao ,
Br | bt | bz [b3 | b4 |[bS |bé |17 [Bir | Bl (B2 |

When the line is idle it remains in a high state. When it drops 1low it
appears as a 0 bit, followed by 8 data bits, followed by 1 or 2 stop bits,
(which are high bits). The bits after the start bit are sent and received at
regular intervals according to the baud rate. Some UART type circuits are
smart enough to detect the baud rate but here we will assume 4800 bits per
second. The most general protocol is to transmit 2 stop bits to the terminal,
and assume that the terminal is sending only 1 stop bit to you.

PROJECT DESCRIPTION

e You are to build a UART to communicate with a terminal as described above.
" . You circuit will basically look like:

< ’//’
~
m&u_r__. @ xur [~
'Swncas 2227 Bt SNSQ - pflf
: g | _snroam ‘- -
7 7L
Ligwts
FoR @ LEVELS
N ow o RCV BT Ricvy
Rev fce o] R(‘- \ R -l
.Ros % rAB - (7
TrBret Siorht Cvo
kavef g Crasis éwd
SYSCLotk <16
g“w Tor

The SNDR (Sender) and RCVR (Receiver) parts should each be controlled by
separate state machines and use separate data registers. The SNDR upon seeing
a XMT.REQ will take the 8 bit ASCII code from the XMT.DAT lines and transmit
them to the terminal over the XMT line. When the SNDR has taken the data from
XMT.DAT it will raise the XMT.ACK line. Sometime after the XMT.ACK 1is gone
high the XMT.REQ will be pulled low. W¥hen the SNDR has transmitted the data,
and when the XMT.REQ is 1low, the SNDR will pull the XMT.ACK 1low, thus
completing the four-cycle handshaking convention.

When the RCVR sees the RCV line drop low, it will receive the 8 bit message
and place the information on the RCV.DAT lines. It will then raise the
RCV.REQ, when it sees the RCV.ACK line go high, it will drop the RCV.REQ, wait
for RCV.ACK to go low and then look for another character from the terminal.

You should use a single system clock to drive your UART which is 8 times
faster than the 4800 baud rate, and you should sample the received signal from
the terminal as nearly in the center of the bit as possible.

The last page of this lab is a copy of the ASCII codes which will be
transmitted. Note however that your UART doesn't care what the code is, but
most likely your computer will care later.

: Design your UART such that the receive and transmit sections can be working
kmy simultaneously on the two serial RCV and XMT lines.

HINTS

Since you will be keeping your circuit and building other stuff onto it later
- DESIGN IT PROPERLY OR YOU WILL GET SCREWED BY IT LATER!!

The packaging of this quarter's project will be a major consideration, so you
should spend a bit of time on each design to make it as small as possible. In
this lab DO NOT USE EPROM's for your state machines as you will need them for
the CPU. Also design URUART so that it fits on a single board. This means
that for the entire quarter you should put chips as close to each other as is
reasonably possible. Ten rows of four 16 pin chips each is about the best
that you can do.

For your clock use the crystal oscillator circuit. The crystal will produce a
1.8432 MHz clock which will be too fast for URSYSTEM. You should design a
clock generator circuit which will divide the clock down to yield a 614.4 KHz
clock. The clock should be asymmetric as shown below. Your clock circuit
should be stoppable and should include a single step capability. Also include
a push button controlled master clear (INIT') generator as part of the clock
unit. Divide the system clock by 16 to get the 8x4800 baud clock for URUART.
Locate the clock on a separate board from URUART - this will become the
maintenance panel board - your next project. SYSCLOCK' will be connected
between boards on pinf!\on the edge connector. INIT' will appear on pin_lz;

e Spdns InSHIus (o ~ /OBSRS e/ 62 8ms —,
Dscrearor Outpor SYScLocCk
/8432 1742 4 £/4.40 kHe

DOCUMENTATION STYLE

This quarter the emphasis will be placed on very systematic design and
documentation procedures. For everything that you build you will be required
to have the following documentation sections:

1. Introduction describing the method you have used in your design and
a description of the way in which you have decided to solve the
problem and why. This section should contain a block diagram of
the circuit and a description of the function of each block. The
block diagram should show all of the communication signals between
blocks, and additionally you should provide any timing diagrams
which are necessary to explain the timing assumptions made for
these signals.

2. A Data-Flow diagram showing all of the components of your circuit
and showing the control points. Naming convention will be Name for
signals which are asserted as high levels and Name' (or overbar)
for signals asserted by low levels.

3. A Control-Flow diagram which will be a State Table or Diagram
showing how the control points in your data-flow diagram are
generated and what sequences are specified. All state assignments
and output and input encodings should be specified.

4, Circuit diagrams - on vellum, with pinouts labeled and a board
layout specified in the normal manner. :

5. Wire lists on the provided forms.

6. Descriptive material explaining your circuit diagrams and referring
to a particular diagram by page number. This material will be used
by the TA in an attempt to understand your circuit.

7. Conclusions - a personal evaluation of how well you think your
circuit was designed and including comments on what you- would do
differently if you were to redesign it.

Except for the vellums, wire lists and board layouts, which will be kept in a
separate 3 ring binder, all documentation will be in a 1lab notebook.
(Preferably the spiral bound 22-157 Computation book).

You should use your lab notebook not only for the final documentation of each
project, but also as a record of the design and debugging work that goes into
the project. Save a page or two at the beginning of the book to use as an
index to indicate where the formal, final documentation for each lab is
located. This portions of the book should be neat, legible and orderly.
Other sections need not be. By keeping all of the work that goes into the
project in one place, you won't lose it, and you will have a record both for
yourself and your TA of the process by which you arrived at a design and how
debugged it.

There is no point in gluing copies of the lab handouts into your lab book.
The TA's have read that already (presumably) and are not apt to be impressed
by your ability to use a glue stick. If you want a copy of the lab available
for reference, stick it in your ring binder. -

Bus Signals

The signals that should be distributed on the bus from the Clock generator
board to the UART board are:

SYSCLOCK! A negative going 614.4 KHz clock with a 1/3 duty cycle (low
for approx. 543 nsec and high for approx. 1085 nsec). This
signal will be inverted and buffered in each module of
URSYSTEM to become EARLYCLOCK which in turn will be reinverted
and buffered to become MODCLOCK', the "normal" clock for the
module. This signal will appear on pin V of the edge
connector. Each module will be allowed to impose a maximum of
2 CMOS loads on this signal.

INIT® The master clear signal for the machine. This signal will
appear on pin 15 of the edge connector. Each module will be
allowed to impose a maximum of 2 CMOS loads on this signal.

N

+.,
LRnP
CLOL(o {
Ceunong, ‘ e :
L
SyEcroti ;I'.—n?
3 Bus LoV
_\ ' ' : éhclnéf*5"
Dr 240808 ﬁnwrzAaaeg U P
\ \ X L AN
& A AY

v
—q e, / — e \/

1700 Mo

. ¥i J‘u"
URvaRT Zanr UR SonETHIWGELS €

CS428 Lab 2: URBUS & URMP

Design Review: Friday April 15 (Sign up for a time

Working URBUS Hardware Due: Friday April 22 All Lab 2 Hardware Working:
Thursday April 28 Lab Books Due: 4 P.M, Friday April 29)

INTRODUCTION

In the previous lab you built a device which.allows a standard terminal to
communicate with an 8 bit parallel path, and in the next lab you will build a

processor and a memory.

In this lab you will build a communication channel

which will allow these three devices to communicate with each other. via -a
In addition you will build another device which will
serve as a maintenance panel for your system to be.
will hereafter be referred to as URBUS, and the maintenance panel as URMP.

particular protocol.

You will also be given a handout on the UNIBUS.

down UNIBUS with smaller data and address paths,
priority level. The protocol by which URBUS will allow communication is

exactly the same as that of the UNIBUS.

The communication channel

URBUS is actually a scaled

and with only a single -

The UNIBUS is the main communication

path in the tremendously successful DEC PDP-11 series. The UNIBUS concept has
had a major influence on modern computer architecture. You should be familiar

with the Unibus from CS322, but we will briefly go over the Unibus handout in
class to refresh your memory. A block diagram of URSYSTEM is:

Fe. oRATY
ARB\TE

9
rAS ™t
— \
~ 3-3 AN -3 Vel
Mme (4 X ™TEm
CLASS)
URBUS

NOTE: Since we will be using a wired-OR feature of the CMOS Open -Drain
74C906 parts to deal with the major bus control signals, it is advantageous to
use low signal levels to indicate a particular action (i.e. negative logic).
In order to be compatible with the handout we will adopt a negative logic

descriptive

"negate signal X" means to pull it high.

URBUS consists of a number of bus wires which are connected to all of the
devices on the bus as shown in the previous figure.
for "Bus Grant" is daisy chained. It will be seen that this daisy chain
technique actually creates a priority for the bus devices based on the
physical position of the device in the daisy chain. URBUS consists of 27

wires which

functionally fall into 3 categories.

1. INITIALIZATION -~ The INIT signal asserted low when asserted will
master clear every device in URSYSTEM. This will be a normal CMOS
output which will be generated by the maintenance panel.

2. DATA TRANSFER -

a.

d.

e.

11 address lines - These lines will be CMOS Tri-States
Because the Tri-state drivers that you will be using are non-
inverting, the address lines will be asserted high (pesitive
logic). The address map will be as follows:

Addresses in RAM
Terminal Status

Terminal Data

= 10lemecacce- URMP
- 1M0rcccccaa URCPU)
8 data lines (Tri-State CMOS, asserted high) - these lines

allow an 8 bit data item to be transferred in parallel.

CONTROL (74C906 Open Drain assterted low) =- true indicates
data is to be transferred from master to slave, and false
indicates data is to be transferred from slave to master.

MSYN (74C906 Open Drain gsserted low) - the master synch
pulse

SSYN (74C906 Open Drain asserted low) - the slave synch pulse

3. PRIORITY ARBITER -

q
a. BBSY (T4C906 Open Drain asserted low) - Bus busy

One particular wire, BG

&

style. That is, "assert signal X" means to pull-X-low. Similarly

b. “BR(T4C906 Open Drain a.aasr&sd.lm) - Bus request
¢. BG - Bus grant normal CMOS signal agggzngn_hign

d. SACK (T4C906 Open Drain asserted Jow) - Selection acknowledge

The URBUS basically consists of two activities:

1. Selection of the bus master, and

2. Transfer of data between established master and slave pairé.

To select a bus master the following protocol must be fo;loﬁgd:

1. Any device may assert BR at any time it wants to become bus master,

- LoOK., FBR. SAck., [ook FER B(.
2. Any time SACK is negated and BR 1s asserted the P;iority Arbiter of
URBUS asserts BG.

3. Any device which receives a BG when its BR is asserted knows that
it will be the next bus master and indicates this by asserting SACK

and negating BR. Such a device must not allow the BG signal to
pass through to the next device on the daisy chain.

4, After seeing the SACK, the Arbiter negates BG.

5. When a device knows that it will be bus master (namely that it is
asserting SACK) then when BBSY is negated it may then assert BBSY
and then negate SACK.

6. The master may then use the bus for as long as is desired. When
the device is done with the bus it negates BBSY.

Notice that this scheme allows master selection and data transfer to happen

in a concurrent pipelined fashion. This overlap can greatly enhance the
performance of URSYSTEM.

Data is transferred over URBUS between the master and a slave. The master
uses the address lines to select the slave device (indicated as the two high
order bits of the address lines). The master drives the CONTROL line when it
drives the address lines. When CONTROL is asserted (low), the master is
sending data to the slave as follows:

When CONTROL is deasserted (high)
follows:

6.

3

. The master asserts CONTROL and drives the address lines with the

proper address.

The master drives the data lines with the proper data.

The master asserts MSYN.

. The slave upon seeing MSYN and CONTROL asserted , latches the data

and asserts SSIN.

When the master sees SSYIN asserted, it negates MSYN and removes the.
data.)
When the slave sees MSYN negated, it negates SSYN.

This cycle may proceed as many times as necessary. Note however,
that only 1 data byte may transfered per cycle.)

The master deasserts CONTROL and drives the address lines with the
proper address to select the slave.

The master asserts the MSYN.

When the slave sees MSYN asserted and CONTROL high, it drives the
data lines and then asserts SSYN,

When the master sees SSYN asserted, it latches the data and then
negates MSYN.

When the slave sees MSYN negated, it removes the data and negates
SSIN.

The whole cycle may occur all over again.

NOTE: All of the lines except BG are tristate lines,

Examples of timing diagrams of both data transfers and arbitration are

“'shown in the UNIBUS handout. You are to build URBUS and the associated

priority arbiter.

the master gets data from the slave as

@

—

S

1 URMP

You are to build a maintenance panel for URSYSTEM which will be a device on
URBUS and have the following switches and lights.

1. A master clear switch which is tied to INIT on UR?US. ‘
2. 11 address switches for driving the address lines.
3. 8 data switches for driving the data lines.

4, A Read/Write' switch which when high indicates URMP wants to read
the indicated address. When it is low it indicates that the data
on the switches is to be placed into the indicated address.

5. On a URMP read the read data is placed in a latch which drives the
8 data lights.

6. A go switch which on a positive edge indicates to URMP to do the -
indicated action.

7. A RUN light which is actually MSYN' and can be used to show active
transfers.

Note that for URMP to work properly, it will be necessary for you to buil
a controller which will interface it to URBUS and the assoclated protocols.

As described, URMP is a master only device, that is all data transfer
invelving the maitenance panel are controlled by URMP. If you are bored an
would 1like a 1little something extra to do, you can implement a slav
capability for URMP. There will be one read/write register, which should have
address 10100000000. Reading this address gives the switch data while data
written to this address will appear on the lights. What you will have
implemented is a control panel.

2 URTERM

Build a controller which will sit between URUART and URBUS to allow a
terminal to communicate with the other devices in URSYSTEM via URBUS. The
" controller should conform to the specs of this lab and convert the request and
acknowledge signals from URUART into URBUS signals for transfer over the bus.
One of the addressed locations is the terminal status register which in its
low order bit will have DRDY (Data Ready) which is actually the RCV.REQ from
URUART. The next to low order bit will be TBE' (Terminal Buffer Empty NOT)
which is actually the XMT.ACK. Writting data to the terminal data register

]
1

will generate XMT.RQST and reéding data from it gives RCV.ACK. Design your
controller so that in transmitting a character from the terminal to another
submachine the bus will clear (i. e. SSIN will negate) before XMT.ACK goes

low, in this way the whole URBUS will not have to wait on URUART to complete
its transfer of serial I1/0. .

3 Cable Formats

In order to have some standardization the following cable formats will be
used to transport the URBUS between your cards. Note the labels on the cards.
You will not actually be using the cables but the edge connector pins that
correspond to the listed cable position. Examine your circuit boards and you
will see the correspondence. :)

3 - DataT

4 - Datab

5 - Databs N
6 - Datal o, -
7 - Data3

8 - Data2

9 - Datat

10 - Data0

URBUS CABLE #1

C - Addri0

D - Addr9

E - Addr8

F - Addr7

H - Addré

J = Addr5

K - Addrid

L - Addr3

11 - Addr2

12 - Addr?

13 - Addr0

14 - Control

15 - INIT

16 - MSYN
~17 - SSIN

18 - BBSY

URBUS CABLE #2
M -
N - BGIZN

SACK

R

S = unused

T < unused

U - unused

V - unused for URBUS but you will use to pass SYSCLOCK'

By using these standard connections you should be able to hook your
processor to someone elses MP and run things!

Ah the old Computer Science Adage "Let's get loaded and link®] |

3} Final Remarks o L

All o’ the Bus Lines other than address and data lines are NEGATIVE losic
(a 0 means do it), and the address and data lines are normal .positive logieo

This is not as bad as it locks, but it is a sericus design so stari now,
ask questions, and make sure that your design is quite solid by the design
review. Take advantage of the TA hours and get in several discussions on. ycur'
design before next Friday. .

URTERM and URMEM will never be bus master and will always be used only as
slave devices. URCPU and URMP may be either a master or a .slave device.

T —F£>4dmplement your controllers as synchronous finite state machines so that

yommmmmm that
you will have to fix a couple of major screw ups before you get this one
working - so give yourself the benefit of the doubt and DO NOT WING ITiiiit!

If you do a seat of the pants design on this one, you will undoubtedly take it
in the seat of the pants.

Try to minimize board spaee again, 1f posszble try to £it URMP and URBUS on
a single card pit e RE= 20 5 S erface._oonds

card. After this lab we uill take a survey of how mnch board space and
component inventory has been consumed.

This is a real problem of almost professional caliber so try to have fun,
and don't let confusion get you down - deal with it by discussion with other
" elass members, TA's, or anybody else who will listen to you.

—_—

CS428 Lab 3: URCPU and URSTORE

May 5-6: Design Review: Complete URSTORE design, preliminary URCPU hardware
and microcode design, including partitioning of URCPU onto two boards.

May 12-13: Design Review: Complete URCPU hardware and microcode design.

May 13: Demonstrate that URMP can read and write to URSTORE as well as to the
terminal.

May 20: Demonstrate that your microcontrol can fetch, interpret and execute a
single macroinstruction.

May 27: Demonstrate that URCPU can get a character from the terminal, add 1 to
the ASCII code, put it in memory and send a copy back to the terminal.
Successive terminal input characters should be stored in sucessive memory
locations. Also show that the value can be read from memory by URMP.

June 1: Demonstrate that your machine can execute a simple test program that
will be given to you.

June 3: Kits turned in and Lab Books due. Details on how the kits should be
turned in will be given to you later, but the procedure is the same as it was
last quarter.

INTRODUCTION

In this lab you will finish off URSYSTEM by adding a URBUS compatible
processor and memory. We will of course call them URCPU and URSTORE (nothing
like flogging a dead horse). URCPU is similar in structure to the simplified
11/0Y4 that you wrote microcode for in CS322 last quarter, but has an 8 bit
wide CPU. The instruction set 1is adequate (hopefully) but substantially
simplifi-d from what you would find in a real microprocessor. The URSTORE
unit wiil be a 1024 by 8 bit storage unit which is addressed in the normal
URBUS convention.

URSTORE

URSTORE will be a slave-only device on the URBUS and will consist of 1024 8
bit words. You will use two 2114 memory chips to implement the store - they
are 1K X 4 chips. TRY to get the memory on the URTERM board. Space is going
to be at a premium. '

URCPU

URCPU will be a simple 8 bit microcoded processor which will communicate over
URBUS in the standard way. URCPU has a single accumulator and only does
absolute addressing. The only other registers which must be in the machine

are:
- IR - an instruction register which 1is used to hold the current
opcode which is being executed.

- AR - a register which is used to hold the bus address for bus read
and write operations.

- PC - a register which 1is used to hold the address of the naxt
instruction which will be executed.

It is suggested that two additional registers be included:

- T - a temporary register

- PS - a register which holds status bits
URCPU on an INIT signal from URMP must set the PC to 000 (hex) and begin
executing program from that location.

The instructioh format 1is always a 2 byte instruction beginning on &n even
numbered location. The format is:

even address byte odd address byte
(smaller address n) (larger address n+1)

|--- 10 bit store address

--~- high order bus address bit

[——— unused

Note that certain instructions don't need an address, and in this casc the
second byte is Jjust wasted space.

The instruction set and opcodes are:

Hex opcode
0

1

Symbol
LDA
STA

LDI
STI pv'F

ADD*
AND*

NOT™

ast®

ASR™

CLE" |
STCS T
BRA
BRC
BR2
BRI

JMS

Meaning

Load accumulator with addressed data
Store accumulator to addressed location

Load accumulator with value in the

address field

Store accumulator to the address in the
location(s) addressed by this instruction

Add the addressed data to the accumulator

Logical and addressed data to the accumulator

1's complement accumulator

Shift accumulator 1 bit left,
shift 0's into low order bit,
high order bit shifts into carry
Shift accumulator 1 bit right,
the current carry is shifted in
from the left, and the low order
bit is shifted into the carry
Clear carry

Set carry

Branch to address

Branch if carry = 1

Branch if accumulator = 0

Branch indirect

Jump to subroutine. Store PC at

addressed locations, start execution

at addressad location + 2

All of the arithmetic is done 2's complement.

NeTE ‘<R

INST DRoPED

T Lenve
et ces

I 'J }“5 Lﬂ‘r\}E

SUGGESTED ARCHITECTURE

Shown below is a suggested dataflow for URCPU. This is only a suggestion, you
are free to rearchitect the machine if you like. At minimum, you should
determine that the suggested dataflow is capable of implementing the required
instructions. AR, IR, and PC are 2 byte registers with a high and low byte.
PS need only be a half byte register. The status bits that you probably need
to keep Erack of are:

C - The carry (out of and into) the ALU.
- Z - This is the F=0 output from the ALU.

- N - This 1is the sign bit of the ALU output (the most significant
bit).

SI - This is the single instruction bit. It comes from a switch on
URMP and indicates that URCPU should stop after the execution of
each macro instruction.
Ab

N

O il

] A

t~———————» ADDRESS BUS

= R -

1

TR
gLMINATE
THRY USE 6= (
mgm YFER

The PS register can be loaded either from the URCPU internal bus or from the
condition bits generated by the ALU and URMP.

T is the temporary register. It is 1 byte. The ALU A input registers will
have to be implemented such that only one of them is enabled to the bus at a
time. The outputs of the PS register and the upper byte of the IR register
will need to be available to Micro controller all of the time.

The Accumulator is the single register on the ALU B input. It will need to
have the ability to shift right (high -> low). You will probably want to have
the PS C bit shift into the high order bit of the B register.

The ALU will be built from the 2 74181's. Note that these are TTL parts. As
such, the will require some special consideration. You will need to be sure
that the inputs are capable of driving the appropriate number of TTL loads and
that the outputs are properly buffered to drive CMOS. Additionally, you will
need to be more careful with these parts then with the CMOS parts. Shorting
TTL outputs to round or +5 is apt to burn them out.
ey i
The next flgure shows a p&gposed micro E%ggguctlon format. RoM |

00 Q0 000000 L3 10 1 Lykelsds 17722 2,202 2 2720272 33
0123456780123 45|67 89012345678 201
M=y

ALU CIN ASRC|BCTRI{ PS [DEST.[BUS [UINST LITERAL
CT SEL |CTRL{BRANC

- ALU - Controls 181's. See table in datasheet.

.

™ W
- Cin - choice of Cin = 0, 1, PS C bit, or PS C bit'.
ol oAl _ sl

- Asrc - choice of IR hlgh or low PC high or low, PS, or T.
- Betrl - nop, load, or shift.
- PSctrl - nop, load from bus, or load from ALU CC's

- Destination - AR high or low, IR high or low, PC high or low, T, or
nothing.

- Bus Control - nop, read, or write.

- u-inst. Branch Ctrl - inc pec, go to lit,go to 1lit saving PC in HR,
go to lit or'ed with PS bits, go to IR, go to HR.

- Literal - 10 bit branch address.

The final figure shows a block diagram of a micro controller. The u-inst.
Branch Control interprets the appropriate field of the micro instruction to
generate the address of the next micro instruction. The signal from the Bus
Control unit suspends the operation of the CPU during bus read and write
operations until the bus operation has completed.

S onE ;aA)
PR - 7 [N e Za e
| z Ar)
| pRovT Vi Mﬁ_pm) 10 BTS
e I 3
HOLD |
REG I__{
[
|
LOUNTERS
IR - :'.,. ? "
}“““IT ' o~ PROM
MUX PG
PSC's | SEL CT 1D
]) l
\
|
l WINST BRANCH CTRL [% LIT

[i
D\NLLE s-TEP /d

\ WPRES W/ MAceD

BUS ‘l
CTRL

— |

\ (hsm Lever) INST
\

B, TV IR E. Scntons S s Sl AN Aot

The CPU will probably not fit on a single board.

Partitioning it between two
boards will be a major headache due to the very limited number of unused pins
on the edge connectors. Think about this one carefully!

Bus wpTE TO mMEM Repl mMeEM 2 BUS

CHIP I

—

T~ emo5

8
=

o

MYST MEED T FULL [oww
[. §ma Per TTL Lonl>

	UART_Specification
	MP_Specification
	UCPU_Specification

