

Dynamic Wireless Decorative Lights

John W. Peterson

March 6th, 2008
Updated August 2014

Overview
Strings of holiday lights add a nice accent to indoor and outdoor spaces. Many
businesses use them to create a festive look. Setting up holiday lights used to be
simple. You’d get out the lights in December, set them up for the Christmas
season, and then take them down early the next year.

But the light manufacturers wised up, and started selling lights for every holiday
they could think of. In addition to Christmas lights, now we have Valentine’s
lights (pink, red & white), St. Patrick’s day lights (green, of course), red white &
blue Independence day lights and Halloween lights in orange (or perhaps a
ghoulish purple and green). That’s a lot of lights to take up and down. For a
large business (say, a big department store) changing all these lights involves a
considerable amount of labor.

Curilights solves this problem. By using multi-colored LEDs instead of light
bulbs, the colors are programmed on the fly. And by using the Lantronix
MatchPort b/g Wireless Embedded Device server, no additional network wiring
is necessary to control the lights – you just broadcast the desired pattern to
change it as often as you like.

Design Overview
Figure 1 below shows an overall block diagram of the system. Each LED has an
associated PIC microcontroller (MCU) driving it. All of the LED / MCU pairs
are connected to a three wire bus with power (+5V / GND) and a serial data
channel. The start of this serial daisy-chain is connected to one of the serial
output ports of the MatchPort b/g.

Curilights – J. Peterson 1

Curilights – J. Peterson Page 2

Power Supply

PIC
MPU

RGB
LED

Serial
I/O

3.3v 5v

GND

Figure 1 - System Block Diagram

At first it may seem like overkill to have a microcontroller dedicated to each
LED, but this design has a lot of advantages. First, because the data is encoded
serially, only three wires are needed to connect the string of lights. Trying to
control that may color LEDs from a central location otherwise requires a large
number of wires (each LED requires four). The local storage and
programmability of the microcontroller enables advanced applications such as
animating the lights. And the MCU provides excellent facilities for managing the
current drive required by the LEDs.

The serial output from the MatchPort b/g is fed to the input of the first LED’s
MCU. The output of this goes to the input of the second, and so on in a daisy-
chain fashion. This structure makes it easy to uniquely identify each MCU,
without the overhead of custom programming each MCU (see below).

A power supply converts AC power into the 3.3v required by the MatchPort b/g
and the 5v used by the MCU/LED string.

Hardware
For the prototype, the 14-pin Microchip PIC16F688 microcontroller was chosen.
Although in theory it’s possible to use an eight pin MCU such as the PIC12F
series or the Atmel AVRtiny, the larger MCU has a couple of useful features.
First, it has an on-board UART hardware for transmitting and receiving serial
data. This enormously simplifies the software and timing for serial

Curilights – J. Peterson Page 3

communications. Second, the additional memory on board eases the protocol
implementation and enables features like animation.

Figure 2 - Photo of the prototype Curilights system

Figure 3 - Close-up of the MCU/LED light

Curilights – J. Peterson Page 4

Each light has just the MCU, LED and circuit board, no other hardware is
required. The current limiting resistors typically associated with LEDs are
avoided by using pulse-width modulation to keep the average current draw per
LED below the 20mA rated maximum. Doing this in software adds little
overhead and saves dozens of components in the finished product. The MCUs
only draw 250µA, a tiny fraction of the 75-80mA used by a fully lit RGB LED.

4 G

3 B

2

C

1 R

PIC16F688

U3

8RC2
9RC1
10RC0
11RA2
12RA1
13RA0
14GND

7 RC3
6 TX
5 RX

4 MCLR
3 RA4
2 RA5
1 V+

4 G

3 B

2

C

1 R

PIC16F688

U1

8RC2
9RC1
10RC0
11RA2
12RA1
13RA0
14GND

7 RC3
6 TX
5 RX

4 MCLR
3 RA4
2 RA5
1 V+

4 G

3 B

2

C

1 R

PIC16F688

U2

8RC2
9RC1
10RC0
11RA2
12RA1
13RA0
14GND

7 RC3
6 TX
5 RX

4 MCLR
3 RA4
2 RA5
1 V+

Figure 4 - Light String Schematic

Because the MCU’s UART implements the standard 9600 baud serial protocol, no
additional hardware is necessary to connect the MatchPort b/g to the string of
lights – the MatchPort simply transmits the same protocol the lights use to
communicate with each other.

Curilights – J. Peterson Page 5

Software
There are two major pieces of software for this project, the low-level
microcontroller code and the high level host software. Let’s look at the
microcontroller first.

The MCU has two functions: driving the LEDs and interpreting the protocol on
the serial line. After initialing the MCU’s configuration registers, the MCU
software enters the main loop controlling the LED’s with pulse-width
modulation (PWM). For each color LED, a variable keeps track of it’s “on” duty
cycle. When the PWM counter exceeds this value, the LED is shut off. When the
counter reaches it’s maximum, it’s reset and the process starts over. The LEDs
are strobed at approximately 1000Hz.

The control protocol allows four brightness levels for each of the red, green and
blue LEDs, ranging from 0 (off) to 3 (maximum brightness). The maximum
brightness is not 100% “on”, but instead is a percentage found to keep the
average current draw of the LED at a safe level (below 20ma) and to keep the
output of the LEDs balanced, so 3,3,3 approximates white. Getting this right
requires some trial and error to find the appropriate values.

7 6 5 4 3 2 1 0
X X 0 1 1 0 1 1

{ { {
{

Red Green Blue

Red 0 1 30 85
Green 0 1 20 105
Blue 0 1 20 80

0 1 2 3

PWM
Count

Figure 5 - Table used to convert color byte into PWM count values

The PWM counter value for each of the four levels (for each LED) is kept in a
table. The protocol specifies a color as the lower six bits of a single byte, where
bits 5:4 specify the red brightness, bits 3:2 specify green, and 1:0 specify blue.
Software on the MCU unpacks these bit fields and uses them as an index into the
table to find the proper PWM count value. When new color values are received,
a flag is set to tell the PWM loop to unpack and use the new values.

The MCU fires an interrupt when a character is received on the serial port. The
interrupt service routine (ISR) implements a simple state machine to interpret the
protocol commands.

Curilights – J. Peterson Page 6

Serial Protocol
The protocol has a simple format. The first byte is a command, followed by up to
three parameters. Each of the parameters within angle brackets is a single byte;
<color> is the six bit color specification described above, <ID> is the number
(starting from zero) of the MCU/LED light.

Name Specification Description
Init I<ID> Sets the IDs of this and subsequent lights
Color C<ID><color> Sets LED at <ID> to <color>
Frame F<ID><frame #><color> Sets <frame #> of LED <ID> to <color>
Step S Steps one forward in the animation
Time T<ticks> Sets the duration of each animation step
Run R Starts the animation at frame 0
Halt H Stops the animation
Number N<count> Broadcasts the light count

The Init command is given as I<0> to the first light. This sets the ID of the first
light to zero. This light then increments the ID, and sends that to the next light,
giving that one an ID of one. The light after that gets an ID of 2, etc. This way
the lights are all given unique IDs. When a command with an <ID> parameter is
sent, each light compares the <ID> in the command with the ID assigned by the
Init command. If a command doesn’t apply to this particular LED, the MCU
rebroadcasts the command on the serial output port, where it’s fed to the receiver
of the next light’s MCU. Some commands, such as Time, Run and Halt, are only
run on the light with ID zero.

Animation1
Several “frames” of different color values may be stored on each light via the
Frame command. The first light in the string (with ID = 0) takes care of sending
out the Step commands to advance the lights to the next frame at regular
intervals to produce animated effects. This is controlled by the Time, Run and
Halt commands.

Since the Step command must propagate from light to light, the following
scheme is used to synchronize the animation. First, the Number command is
used to broadcast the total number of lights to all the MCUs in the string. When
the first light in the string (light 0) begins a frame, it immediately sends a Step
command to the other lights, but delays for the number of lights times 2ms (the
time to receive and send a step command) before actually changing the light
color, to give the command time to propagate down the string. Each subsequent

1 The animation feature is designed but not fully implemented in the prototype.

Curilights – J. Peterson Page 7

light delays for (N - ID) * 2ms, and the last light changes as soon as it receives the
S command; this way all the lights change their colors at the same time.

Host Software
On the host side, the lights are easily controlled by a short program with access
to TCP/Sockets. The host first initializes the lights by sending the I<0>
command, so the lights give themselves unique IDs. Because the lights are
controlled over the network, it makes a natural web application tool. A simple
Python script for controlling the lights is included as an appendix.

Fabrication
The current prototype implements a string of four LEDs, these are connected
directly to the MatchPort b/g Demonstration board. Each MCU/LED pair was
assembled on a small piece of perfboard. The TXD1 output of the MatchPort b/g
is connected directly to the serial input of the first light’s MCU. A MAX756
based boost regulator was added to the Demonstration board to convert its 3.3v
power to the 5v supply used by the string of lights.

For a finished product, the MCU and LED could easily be molded into a small
plastic shell. MCUs like the PIC16F688 are available in very small surface mount
packages. A control box at one end would house the power supply and the
Lantronix MatchPort b/g. A simple configuration port may also be desirable to
enable configuring the MatchPort.

The technology is well suited to strings of about 25 lights. Although the protocol
supports up to 127 lights, beyond 50 or more, the animation speed becomes
limited because of the required serial propagation time. This can be mitigated
by using the same MatchPort b/g to control two separate strings of lights on the
two separate serial ports provided.

Care must be taken to ensure adequate power is supplied; each LED uses up to
80mA, so a 50 light string uses approximately four amps at 5V (20 watts).

Conclusion
Curilights is a design capable of revolutionizing the way decorative lights are
used, opening many new creative possibilities in both interior and exterior
design. By using the Lantronix MatchPort wireless technology, these lights may
be deployed anywhere existing lights are with no additional network wiring.

Curilights – J. Peterson Page 8

Sample Host Control Script
#!/usr/bin/python

Simple Python script to demo controlling Curilights from a TCP
host. Project WDC143

import socket, time

Must be changed to the IP address of your Curilights
LtxHost = '192.168.0.121'
LtxSerialPort = 10001

def openCurilights():
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect((LtxHost, LtxSerialPort))
 return s

Send a command to the light string
def sendCommand(ltxsock, cmd, id = None, arg2=None, arg3=None):
 msg = cmd;
 if (id != None):
 msg += chr(id)
 if (arg2 != None):
 msg += chr(arg2)
 if (arg3 != None):
 msg += chr(arg3)

 ltxsock.sendall(msg)

Set the colors of the lights. Each color is assumed to be
a three digit integer, where each digit is between 0..3, and
the digits correspond to RGB respectively. Thus 300 would be
full on red, and 001 would be blue, and 333 full bright white.

When you pass a list like [300, 30, 3], the first number
controls light 0, the next 1, etc. Note: do *NOT* write
numbers with a leading zero, or else Python will interpret them
as being in octal! (i.e., "010" ==> 8)

def setColors(ltx, colorlist, sleeptime = 0):
 def colorToChar(color):
 r = color/100
 g = (color % 100) /10
 b = color % 10
 return (r << 4) | (g << 2) | b

 i = 0
 for c in colorlist:
 sendCommand(ltx, 'C',i, colorToChar(c))
 i += 1

 time.sleep(sleeptime)

Curilights – J. Peterson Page 9

def CurilightTest():
 ltxsocket = openCurilights()
 sendCommand(ltxsocket, 'I', 0)
 setColors(ltxsocket, [0, 0, 0, 0])
 setColors(ltxsocket, [111, 111, 111, 111], 1)
 setColors(ltxsocket, [30, 30, 30, 30], 1)
 setColors(ltxsocket, [300, 300, 300, 300], 1)
 setColors(ltxsocket, [11, 11, 11, 11], 1)
 setColors(ltxsocket, [300, 30, 300, 30], 1)
 setColors(ltxsocket, [222, 3, 222, 3], 1)
 setColors(ltxsocket, [111, 111, 111, 111], 1)
 ltxsocket.close()

CurilightTest()

def RotationTest():
 ltxsocket = openCurilights()
 sendCommand(ltxsocket, 'I', 0)
 speed = 0.15
 for i in range(0,10):
 setColors(ltxsocket, [300, 3, 3, 3], speed)
 setColors(ltxsocket, [3, 300, 3, 3], speed)
 setColors(ltxsocket, [3, 3, 300, 3], speed)
 setColors(ltxsocket, [3, 3, 3, 300], speed)
 setColors(ltxsocket, [3, 3, 300, 3], speed)
 setColors(ltxsocket, [3, 300, 3, 3], speed)
 ltxsocket.close()

RotationTest()

	Dynamic Wireless Decorative Lights
	John W. Peterson March 6th, 2008 Updated August 2014
	Overview
	Design Overview
	Hardware
	Software
	Serial Protocol
	Animation0F
	Host Software
	Fabrication
	Conclusion
	Sample Host Control Script

