
Cornelius van Drebbel’s Mad Design Contest

NECTilt – A Tilt Based User Interface

©2004 John W. Peterson

Introduction

The availability of low cost, solid state accelerometers opens up great new
possibilities for interacting with small electronic gadgets. NECTilt shows some
creative applications for using an accelerometer with the EV9835.

An accelerometer measures the force of acceleration acting upon the device. This
can be through movement, or by the force of gravity. By using gravity as the
acceleration force, the device easily measures tilt angles.

The accelerometer used for this project is a Memsic MXD2004A1. It’s a tiny, low
cost, low power, solid-state CMOS part that uses minute temperature gradients
across a bubble of air to measure acceleration forces in two dimensions. The
device produces two pulse-width modulated outputs, one for measuring the X-
axis, the other for Y. Overall the device has a range of 5g

Figure 1 - Photomicrograph of the Memsic accelerometer

Two software applications for the accelerometer are presented. The first is a
simple carpenter’s level. This uses the tilt sensor as a traditional data source.

The other application is a rolling ball maze puzzle. Here the concept is to use the
tilt sensor as a user interface, instead of the typical switches and buttons.

1 See http://www.memsic.com

Peterson - NECTilt Page 2

Design Considerations
The software developed works specifically with the Memsic MXD2004A sensor
running with its default clock. The software could easily be enhanced to
accommodate other similar sensors. Also, no attempt at temperature
compensation is done. While not necessary for the simple applications presented
here, systems expecting high precision measurements would require it (this is
detailed in Memsic’s application notes).

Microprocessor Functions Used
The design uses the LCD display, the parallel I/O ports, and the watch timer.
No other external components or interface is required.

Electrical Interface
Other than the addition of the Memsic sensor, the EV9835 board is used
unmodified for this project.

uPD789835 CPU LCD Display
MXD2004A

Sensor

Switches Photocell

X

Y

Backlight Beeper

Figure 2 - System Overview Block Diagram

Connecting the sensor to the CPU is incredibly easy. The MXD2004A has a wide
power supply range (2.7v – 5.2v) so it connects directly to the EV9835’s power
supply with nothing more than a bypass capacitor.

Peterson - NECTilt Page 3

0.1μ C1

J5

MXD2004A

IC1

V
D

D

SCK
VREF

X_OUT
V

D
A

G
N

D
Y_OUT
T_OUT

K
1

VDA

X_OUT
Y_OUT

GND

EV9835MEMSIC Demo board

Figure 3 - Schematic Diagram

Figure 4 - EV9835 Board with Memsic Sensor Attached

The sensor was mounted on a demo board provided by Memsic. Other than
assembling a simple connector for the two parts, no further electronics is needed.
The PWM outputs of sensor are connected to bits 7 and 8 of port 3.

Peterson - NECTilt Page 4

Low-level Software∗
The basic algorithm for reading the sensor line consists of measuring the pulse
width. This is accomplished with a simple tight loop:

 while (P3 & X_AXIS) {}; // Wait for line to go low
 while ((P3 & X_AXIS) == 0) {}; // Wait for line to go high
 while (P3 & X_AXIS) // Count while line is high
 count++;

Since the internal clock of the sensor is around a few hundred kilohertz, the
count ranges from around 125 counts to 240 across 180 degrees of tilt. The
counting is done with interrupts turned off, to avoid erratic results when timers
go off or buttons are pushed.

To help smooth the data even further, four readings are taken and then averaged.
These are then scaled down to the 0..48 range of the display, to make graphics
computation work well. This is implemented in memsic.c

Application1 – Level
The Level application replicates a simple carpenter’s level. In a traditional
carpenter’s level, a bubble in small tube of liquid indicates if the tube is level
when the bubble is in the middle. Circular levels (sometimes used for leveling
camera tripods) have the bubble floating under a disc, indicating a level
orientation when the bubble is the center.

∗ Note a detailed description of the software is provided in lieu of flowcharts

Peterson - NECTilt Page 5

Figure 5 - Level Application Display

This application is similar, except the indicator moves towards the tilt (instead of
away from it, like a bubble level), and numeric readouts of the X and Y tilt angles
are provided. This software takes advantage of the sample application provided
with the EV9835. In particular, code for initialization, managing the LCD
display, sound, the real time clock, and other functions where used.

The code for the level is quite simple:

 SetLCDDisplayPattern('A'); // Set up display
 SetLCDWritePattern('B');
 ClearLCDPattern('A');
 ClearLCDPattern('B');

 while (Test_Switch() == 0) // Pressing any switch exits
 {
 ClearLCDWritePattern();

 // Read tilt data
 ReadScaledMemsic(&x, &y);

 // Draw results
 DrawRectangle(x-1, y-1, x+1, y+1, BLACK_DOT);
 DrawCircle(24, 24, 12, BLACK_DOT);
 draw_angle(x, 0, 'X');
 draw_angle(y, 4, 'Y');

 // Swap buffers
 SwapLCDWritePattern();
 SwapLCDDisplayPattern();
 }

The draw_angle routine formats the numerical result at the bottom of the
display. The code uses “double buffering”, where the graphics are written into
an offscreen buffer before being swapped with the displayed one. This helps
avoid any flicker in the display. As shown in the attached movie, the display is
quite smooth. The level application is implemented in the file level.c

Peterson - NECTilt Page 6

Application 2 – Tilt Maze

Figure 6 - A TiltMaze

The Tilt Maze is a puzzle created by Andrea Gilbert2. The idea is to roll a ball
from its initial start position to a goal (marked by a small square). The ball
always rolls until it comes to a wall, and only rolls horizontally or vertically. The
puzzles are actually trickier than they appear, since the movements must go in a
particular order to solve the puzzle.

In NECTilt, you tilt the EV9836 to move the ball, just like you would a real
puzzle. In addition, some gestures are added to control the game. Shake the
puzzle vertically, and it resets (useful if you get stuck). Shake the puzzle
horizontally, and it switches to the next maze.

The maze is implemented as an array of bytes, one byte for every grid cell in the
maze. Each byte has a bit set corresponding to any “walls” in the cell. In the
sample above, for example, the top left cell would have the bits set for the North
and West walls. A draw routine walks through the array of cells and draws lines
corresponding to the bits set.

The code monitors the tilt sensor and starts the ball rolling (either North, South,
East or West) when it’s been tilted far enough. When a roll starts, the software
examines the cells in the path of the roll direction, and stops when it encounters a
wall bit corresponding to the direction of travel. The roll is animated (using a
double-buffer scheme similar to the level application), then the code waits for a
tilt in a new direction. When the goal is reached, it beeps and blinks the
backlight.

To implement the shake gestures, the routine for reading the Memsic sensor was
extended to record every time the it reached “full scale” maximum and
minimum values in each direction (X and Y). The watch timer ISR was modified

2 See http://www.clickmazes.com/newtilt/ixtilt2d.htm

Peterson - NECTilt Page 7

so every second it saves these maximum and minimum counts, and then resets
them. To see if a shake occurred, the last count of both limit values is read. If
both limits were hit for a particular direction within the last interval, a “shake”
occurred.

Like the level, the TiltMaze application also leverages code from the sample
application for graphics, sound and RTC control. It is implemented in the file
tiltmaze.c

Other Software details.
The folder “Application” contains the full source code described above. The
demo application supplied with EV9835 was used as a starting point. The
applications in it were removed, but the library code was used and extended.
The applications described above were added to this frame work.

A simple test harness selects the applications; pressing switch S3 selects Level,
pressing S4 selects TiltMaze, and pressing S2 displays some debugging
information used to get the sensor code up and running.

Conclusion
NECTilt demonstrates using a tilt sensor for both measurement, and as a user
interface replacing the traditional buttons and switches. Using a tilt sensor for
user interface opens the door for a range of applications from novel games to
specialized tools. For example, in environments where buttons are clumsy
awkward to use (for example, while wearing heavy gloves) a gesture based
interface implemented with an accelerometer is a valuable alternative.

Supplied Files
 Application Source code in C for the PM Plus IDE
 LevelDemo.mov Quicktime movie of the Level application
 TiltMazeDemo.mov Quicktime movie of the TiltMaze application
 Shake_Gesture.mov Demonstration of the shake gesture
 Pictures Photos (jpg format) of the system

Contact
 John W Peterson - necdesign@saccade.com - 650 854 8538
 12 Bishop Lane

Menlo Park, CA 94025 USA

mailto:necdesign@saccade.com

	Cornelius van Drebbel’s Mad Design Contest
	NECTilt – A Tilt Based User Interface
	©2004 John W. Peterson
	Introduction
	Design Considerations
	Microprocessor Functions Used
	Electrical Interface
	Low-level Software(
	Application1 – Level
	Application 2 – Tilt Maze
	Other Software details.
	Conclusion
	Supplied Files
	Contact

