
1

Arc Length Parameterization of Spline Curves

John W. Peterson
Taligent, Inc.

10725 N. DeAnza Blvd
Cupertino CA, 95014, USA

jp@taligent.com

Abstract

It is often desirable to evaluate parametric spline curves at points based on their
arc-length instead of the curveÕs original parameter. Techniques are presented
here for computing a reparameterization curve allowing approximate arc-length
evaluation. This reparameterization curve is also expressed as a spline, allowing
rapid evaluation as a function of arc-length. Using composition methods
developed by DeRose et. al, the original curve and its reparameterization curve
may be composed into a single, higher order curve that exhibits approximate arc-
length parameterization.

Introduction

In many applications for spline curves, it is desirable to find points along a curve
at intervals corresponding to the curveÕs arc-length. Examples include drawing a
curve with dashed or patterned lines, placing text along a curved path, or
accurately moving objects as part of an animated sequence. Except for linear
(degree 1) curves, it is not possible to directly represent arc-length
parameterization Ð it must be approximated. This paper presents an accurate
approximation method for creating an auxiliary reparameterization curve. This
reparameterization curve provides an efficient way to find points on the original
curve corresponding to arc length.

Author's address
I am no longer at Taligent.

My new e-mail address is:
 jp[at]acm.org

2

Two parametric curves. The dots on the left curve are at equal parametric

intervals. The dots on the right curve are at equal arc length intervals.

A parametric curve is defined as1,2:

 Q(u) = (QX (u),QY (u))

A function L(u) is defined as the arc length of the curve Q(u) at a particular
value of u.. If a = L(u) specifies an arc length along Q(u) , an additional function
is defined, u = L-1(a), that gives QÕs parameter u for a particular arc length a.

Thus evaluating Q(L-1(a)) determines the point on Q that is arc length a from the
beginning of the curve.

Previous methods have concentrated on ways of evaluating Q(a) directly.
Hartley and Judd3 discuss methods for adjusting the knots of a B-Spline curve to
get better parameterization, but found it was slow and unpredictable. Sharp and
Thorn4 present a method based on root finding similar to the process of
evaluating L

-1(a) presented here, but this must be done every time the curve is
evaluated, which is computationally slow. Guenter and Parent5 present an
improvement to Sharp and ThornÕs method that speeds up the integration step.

3

The approach taken here is to first approximate L
-1(a) with an additional spline

curve l(u), thus allowing Q(a) to be found efficiently by evaluating Q(l(a)).
Since both Q(u) and l(u) are defined as spline curves, itÕs also possible to define
a new curve

 P(a) =Q(l(a))

by composing the two spline functions together to generate a new, higher order,
spline curve.

In the presentation here, the method for finding the arc length of a parametric
curve is first discussed. Then methods for determining a curveÕs parameter
given an arc length are shown. A method for approximating the
reparameterization function with Chebyshev polynomials is discussed, along
with a technique for converting this function into another spline curve. Finally,
composing the reparameterization with the original curve is briefly summarized.

Finding the arc length

The length function L(u) is defined by5

L(u) = ¢Q (u)

u0

u1

ò du

where

 ¢Q (u) = ¢QX (u)2 , ¢QY (u)2

Calculating L(u) requires evaluating the arc length integral. Guenter and Parent
suggest using an adaptive application of Gaussian quadrature5. The results
presented here are found by a similar method, using GaussÐLegendre
integration. Instead of applying the integral to the entire curve, it is applied to
each polynomial segment of the curve, and the results are summed. This gives
very accurate results, since N point GaussÐLegendre is exact for a polynomial of

4

degree 2NÐ1 or less.6

If Q is a B-spline curve of order k, then it is defined with m+1 control points

 V0KVm and m+k+1 knots u0Kum+k .1 We define d as an index into QÕs knot
vector such that ud < ud+1 (i.e, d indicates a breakpoint interval Ð a non-zero span

of the knot vector defining a polynomial segment). If a is the highest d where

 ua < u, then the length is found with:

L(u) = ¢Q (u)

ud

ud+1

ò du
for all d

d<a

å + ¢Q (u)
ua

u

ò du

where the integrals are computed with Gauss Legendre integration with the
appropriate number of weights for the curveÕs polynomial degree. In the
implementation it is useful to cache the lengths L(ud) of all the curveÕs segments

 ud < ud+1 so that only one integration is necessary to find L(u) for a particular

value of u.

The next step is to find the parameter u for a particular arc length a of the curve
(the function L

-1(a)). This is determined by using a root finding technique such
as NewtonÕs method to find a value u where L(u) - a = 0 .

NewtonÕs method uses the iteration sequence

ui+1 = ui -

f (ui)
¢f (ui)

to find u such that f (u) = 0 . In our case f (u) = L(u) - a , and ¢f (u) = ¢Q (u) , the

original integrand for L(u). NewtonÕs method converges very quickly, but it can
fail in some pathological cases, either by cycling around the root (and never
finding it) or rapidly diverging away from the root. In this algorithm however,
these problems are not likely to occur, because L

-1(a) is a smooth, monotonically
increasing function, and is ideally suited for Newton iteration. Additional
measures can be taken in implementing the root finder to avoid pathological
cases, see Press et. al.6

Approximating the reparameterization curve

If the function u = L-1(a) is evaluated frequently for a particular Q(u) , it is useful

5

to create a spline curve that approximates L
-1(a). Then evaluating L

-1(a) is
simply reduced to an additional spline evaluation, which is generally much less
computation than performing the integration and root finding discussed above.

Our method for approximating this reparameterization curve is based on a
technique developed by Watkins & Worsey7 for reducing the degree of B�zier
curves. The approach is to use Chebyshev polynomials to approximate the
reparameterization curve. If the approximation is accurate enough, then the
Chebyshev polynomial is converted directly to a B-spline (more specifically, a
piecewise B�zier) by a simple change of basis.

Chebyshev approximation

A Chebyshev polynomial Ti(u) is defined as:

 Ti(u) = cos(iarccosu)
For small values of i the Ti(u) are:

T0(u) = 1
T1(u) = u

T2(u) = 2u2 - 1

T3(u) = 4u3 - 3u
To approximate a function f (u) with a K order Chebyshev polynomial, we
compute a set of coefficients ci :

ci =

2
K

f cos
p(j - 1

2)
K

æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
ú

j=1

K

å cos
pi(j - 1

2)
K

æ
è
ç

ö
ø
÷

so that:

f (u) » ci

i=0

K-1

å Ti(u)
é

ë
ê

ù

û
ú -

1
2
c0

giving a polynomial in terms of Ti(u) that approximates f (u). In the case of
computing an approximation to the reparameterization function, f (u) is set to

 L
-1(u), where L

-1 is the Òinverse arc lengthÓ function described above.

For very large values of K, the Chebyshev approximation is very accurate. An
advantage of Chebyshev polynomials is the higher order terms may be dropped
to give a lower order (and less accurate) approximation. The difference in the
terms removed provides a good estimate of the accuracy of the lower kÐorder
approximation. More specifically, if k < K then error e between f (u) and the

6

approximation to it is:

e = ci

i=k

K-1

å » f (u) - ci
i=0

k-1

å Ti(u)
é

ë
ê

ù

û
ú -

1
2
c0

æ

è
ç

ö

ø
÷

Converting to B�zier form

Chebyshev polynomials are originally defined over the range -1...1. However, it
is a simple matter to convert them to the range 0...1. by substituting 2u - 1 into

 Ti(u) to get Ti(u) e.g.,, T1(u) = 2u - 1, T2(u) = 8u2 - 8u + 1, etc.1 The Chebyshev

approximation can be represented in matrix form as cTu where

 u = 1 u L uk[]T
 and c is the coefficient vector c0 c1 L ck[]. Likewise, it is

possible to represent a B�zier curve in matrix form as VBu where V is the control
point vector. The matrices B and T can be thought of as basis conversion
matrices. Thus converting Chebyshev coefficients into B�zier control points is
simply:

 V = T-1B-1()c
Explicit formulations for the change of basis matrices are given by Watkins et.
al.7,8

Individual B�zier segments may be joined into a single B-spline curve, since
B�zier curves are a special case of B-Splines.2 Using multiple curve segments
allows increasing the accuracy of the approximation without increasing the order
of the curve. The algorithm presented in the following section takes advantage
of this property.

When multiple segments of a B�zier curve are computed from a Chebyshev
approximation, the endpoints of the individual segments are not equal, i.e., slight
C0 discontinuities occur. Fortunately the error introduced by this is minor and

may be avoided by simply forcing the endpoints to be equal at the junction
between B�zier segments. Watkins [Watkins88] gives a more detailed
examination of the error introduced by this Òenforced interpolationÓ.

Approximation algorithm

1Note the substitution does not effect the equation for computing the coefficients ci .

7

The combination of Chebyshev approximation and converting Chebyshev
polynomials into B�zier form leads to the following algorithm for approximating
a function f (u) with a spline curve. The algorithm creates a Chebyshev
approximation for f (u) over the full range of the function. If the approximation

is close enough, then it is converted into B�zier form. Otherwise the parameter
range of f (u) is subdivided and each half is approximated. The subdivision

continues until the approximation is within tolerance or a maximum recursion
depth is reached. During the subdivision process, an array of integers keeps
track of the subdivision depth of each successful approximation. This is used to
construct a knot vector for the final approximation curve that matches f (u)Ôs

parameterization.

Inputs:
f Function to be approximated

 umin ,umax Parameter range f is approximated over
k Desired order of the spline approximation
K Order to use for Chebyshev approximation (K > k)
max_points Maximum number of control points allowed

 emax Maximum approximation error

Outputs:
m Highest control point index
V The B-Spline control points
 u The B-Spline knot vector

DoSegment(t,v , level)
begin

 c¬ coefficients for a K order Chebyshev approx to f (u), u = tKv

e ¬ ci

i=k

K-1

å
if (e < emax) or (level > max_level) then

 VN (k-1)L(N+1)(k-1) ¬ T-1B-1()c0Lk-1

 hN ¬ level /* Record recursion depth for creating the knot s */

depth ¬ max(level, depth)
 N ¬ N + 1

else
 s¬ (t + v)/ 2
DoSegment(t, s, level + 1)
DoSegment(s,v, level + 1)

endif
end

8

begin
 N ¬ 0 /* Number of segments in the approx. curve */

depth ¬ 0

max_level ¬

log2

max_ points
k

DoSegement(umin ,umax , 0)

 m¬ N(k - 1)
seg ¬ 0

for i ¬ 0 to N do /* Compute the knot vector based on the */

for j ¬ 1 to k - 1 do /* subdivision depth of the particular segment */

 uj+ i(k-1) ¬ seg

 seg ¬ seg + 2depth-hi

endfor

 um+k ¬ um+k-1

for i ¬ 0 to m + k /* Scale the knot vector to the curveÕs arc length */

ui ¬ ui

umax

um+k

æ

è
ç

ö

ø
÷

end

This algorithm provides a way to create a spline curve l that accurately
approximates the inverse arc length function L

-1 . Once this approximation is
complete, the curve is evaluated at a particular arc length a by evaluating

 Q(l(a)), as stated above.

Control polygon
Approximation
Actual

Actual + Approx

Subdivision level

4
3
2

lengt

u

Reparameterization curve for the curve shown in the Introduction.

Note the adaptive nature of the spline approximation

9

Creating an approximately arc length parameterized curve

As stated in the introduction, it is possible to create a single curve ,

 P(a) =Q(l(a))
by composing the two polynomials defining Q(u) and l(u).

DeRose et. al. describes how to compose two spline curves to create a new curve
of higher order.9 To briefly summarize, the knots of Q(u) must be merged into
the knot vector of l(u), so that l(u) is defined as a piecewise B�zier curve with
each segment contained within a parametric interval of Q(u)Õs knot vector. Each
of these segments is composed with Q(u), creating a new piecewise B�zier curve,

 P(a) . The knot vector for P(a) is reconstructed from the knots created for l(u).

The new curve P(a) will have a degree equal to the degree of l(u) times the
degree Q(u) (e.g., a cubic reparameterized by a quadratic is degree six). The high
order significantly increases the number of control points required to represent
the reparameterized curve. In the example above, the original curve has 10
control points, and the reparameterization curve has 17. The composition of the
two curves, however, requires over 50 control points. Thus it usually more
efficient to store the reparameterization curve separately and evaluate both l(u)
and Q(u) to find a point on the curve. The computational cost of two low-order
spline evaluations is not significantly different from a single high order
evaluation.

10

Curve generated by composing the curve with the reparameterization

function. The straight lines are the original control polygon,

the dots are the control points for the composed curve.

Discussion

The method presented for approximating the reparameteriztion curve probably
has uses beyond the problem presented here. It may be useful for other
situations where it is desirable to represent a function with a spline curve.

The technique works with rational curves (e.g., NURBS), as long as the derivative
function for the curve (¢Q (u)) is correctly defined by using the quotient rule from
elementary calculus. See Farin2 for details.

The techniques presented here are most useful for situations where an arc length
parameterization of a curve is evaluated frequently after the curve is created.
Storing the reparameterization function as an additional spline curve allows
rapid evaluation of a curve by its arc length, since spline evaluation is much
faster than computing the integral length of the curve. Additionally, it is possible
to compose the reparameterization curve with the original, generating a new
higher order curve with arc length parameterization.

11

Acknowledgements

I would like to thank Tony DeRose and Yinsun Feng for helpful discussion
during the course of this work.

References

1. Bartels, R.H., Beatty, J.C., and Barsky, B.A., An Introduction to Splines for use in

Computer Graphics and Geometric Modelling, Morgan Kaufmann (Los Altos),
1987.

2. Farin, G., Curves and Surfaces for Computer Aided Geometric Design,, (2nd Ed.)
Academic Press (San Diego), 1990.

3. Hartley, P.J., and Judd, C.J., ÒParameterization and Shape of B-Spline Curves
for CAD,Ó CAD, 12(5), September 1980, p.235

4. Sharpe, R.J., and Thorne R.W., ÒNumerical Method for Extracting an Arc
Length Parameterization from Parametric Curves,Ó CAD, 14(2), March 1982,
p.79

5. Guenter, B., and Parent R., ÒComputing the Arc Length of Parametric Curves,Ó
IEEE Computer Graphics and Applications, May 1990, p. 72

6. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical

Recipes in C, Cambridge University Press (Cambridge), 1988.

7. Watkins, M.A., and Worsey, A.J., ÒDegree Reduction of B�zier CurvesÓ, CAD,
20(7), September 1988, p. 398,

8. Peterson, J.W., ÒLetter to the EditorÓ, CAD, 23(6), August 1991, p.460

9. DeRose, T.D., Goldman, R.N., Hagen, H. and Mann, S. ÒFunctional
Composition Algorithms via BlossomingÓ, May 1992, to appear.

